mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-07 18:27:48 +08:00
d11dc049e3
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@1015 d0cd1f9f-072b-0410-8dd7-cf729c803f20
228 lines
10 KiB
C++
228 lines
10 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_
|
|
#define THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_
|
|
|
|
#include "genericvector.h"
|
|
#include "matrix.h"
|
|
#include "statistc.h"
|
|
|
|
struct Pix;
|
|
template <typename T> class UnicityTable;
|
|
|
|
namespace tesseract {
|
|
|
|
struct FontInfo;
|
|
class FontInfoTable;
|
|
class SampleIterator;
|
|
class ShapeClassifier;
|
|
class TrainingSample;
|
|
struct UnicharRating;
|
|
|
|
// Enumeration of the different types of error count.
|
|
// Error counts work as follows:
|
|
//
|
|
// Ground truth is a valid unichar-id / font-id pair:
|
|
// Number of classifier answers?
|
|
// 0 >0
|
|
// CT_REJECT unichar-id matches top shape?
|
|
// __________ yes! no
|
|
// CT_UNICHAR_TOP_OK CT_UNICHAR_TOP1_ERR
|
|
// Top shape-id has multiple unichars? 2nd shape unichar id matches?
|
|
// yes! no yes! no
|
|
// CT_OK_MULTI_UNICHAR | _____ CT_UNICHAR_TOP2_ERR
|
|
// Font attributes match? Any unichar-id matches?
|
|
// yes! no yes! no
|
|
// CT_FONT_ATTR_OK CT_FONT_ATTR_ERR ______ CT_UNICHAR_TOPN_ERR
|
|
// | __________________ _________________
|
|
// Top shape-id has multiple font attrs?
|
|
// yes! no
|
|
// CT_OK_MULTI_FONT
|
|
// _____________________________
|
|
//
|
|
// Note that multiple counts may be activated for a single sample!
|
|
//
|
|
// Ground truth is for a fragment/n-gram that is NOT in the unicharset.
|
|
// This is called junk and is expected to be rejected:
|
|
// Number of classifier answers?
|
|
// 0 >0
|
|
// CT_REJECTED_JUNK CT_ACCEPTED_JUNK
|
|
//
|
|
// Also, CT_NUM_RESULTS stores the mean number of results, and CT_RANK stores
|
|
// the mean rank of the correct result, counting from 0, and with an error
|
|
// receiving the number of answers as the correct rank.
|
|
//
|
|
// Keep in sync with the ReportString function.
|
|
enum CountTypes {
|
|
CT_UNICHAR_TOP_OK, // Top shape contains correct unichar id.
|
|
// The rank of the results in TOP1, TOP2, TOPN is determined by a gap of
|
|
// kRatingEpsilon from the first result in each group. The real top choice
|
|
// is measured using TOPTOP.
|
|
CT_UNICHAR_TOP1_ERR, // Top shape does not contain correct unichar id.
|
|
CT_UNICHAR_TOP2_ERR, // Top 2 shapes don't contain correct unichar id.
|
|
CT_UNICHAR_TOPN_ERR, // No output shape contains correct unichar id.
|
|
CT_UNICHAR_TOPTOP_ERR, // Very top choice not correct.
|
|
CT_OK_MULTI_UNICHAR, // Top shape id has correct unichar id, and others.
|
|
CT_OK_JOINED, // Top shape id is correct but marked joined.
|
|
CT_OK_BROKEN, // Top shape id is correct but marked broken.
|
|
CT_REJECT, // Classifier hates this.
|
|
CT_FONT_ATTR_ERR, // Top unichar OK, but font attributes incorrect.
|
|
CT_OK_MULTI_FONT, // CT_FONT_ATTR_OK but there are multiple font attrs.
|
|
CT_NUM_RESULTS, // Number of answers produced.
|
|
CT_RANK, // Rank of correct answer.
|
|
CT_REJECTED_JUNK, // Junk that was correctly rejected.
|
|
CT_ACCEPTED_JUNK, // Junk that was incorrectly classified otherwise.
|
|
|
|
CT_SIZE // Number of types for array sizing.
|
|
};
|
|
|
|
// Class to encapsulate all the functionality and sub-structures required
|
|
// to count errors for an isolated character classifier (ShapeClassifier).
|
|
class ErrorCounter {
|
|
public:
|
|
// Computes and returns the unweighted boosting_mode error rate of the given
|
|
// classifier. Can be used for testing, or inside an iterative training
|
|
// system, including one that uses boosting.
|
|
// report_levels:
|
|
// 0 = no output.
|
|
// 1 = bottom-line error rate.
|
|
// 2 = bottom-line error rate + time.
|
|
// 3 = font-level error rate + time.
|
|
// 4 = list of all errors + short classifier debug output on 16 errors.
|
|
// 5 = list of all errors + short classifier debug output on 25 errors.
|
|
// * The boosting_mode determines which error type is used for computing the
|
|
// scaled_error output, and setting the is_error flag in the samples.
|
|
// * The fontinfo_table is used to get string font names for the debug
|
|
// output, and also to count font attributes errors.
|
|
// * The page_images vector may contain a Pix* (which may be NULL) for each
|
|
// page index assigned to the samples.
|
|
// * The it provides encapsulated iteration over some sample set.
|
|
// * The outputs unichar_error, scaled_error and totals_report are all
|
|
// optional.
|
|
// * If not NULL, unichar error gets the top1 unichar error rate.
|
|
// * Scaled_error gets the error chosen by boosting_mode weighted by the
|
|
// weights on the samples.
|
|
// * Fonts_report gets a string summarizing the error rates for each font in
|
|
// both human-readable form and as a tab-separated list of error counts.
|
|
// The human-readable form is all before the first tab.
|
|
// * The return value is the un-weighted version of the scaled_error.
|
|
static double ComputeErrorRate(ShapeClassifier* classifier,
|
|
int report_level, CountTypes boosting_mode,
|
|
const FontInfoTable& fontinfo_table,
|
|
const GenericVector<Pix*>& page_images,
|
|
SampleIterator* it,
|
|
double* unichar_error,
|
|
double* scaled_error,
|
|
STRING* fonts_report);
|
|
// Tests a pair of classifiers, debugging errors of the new against the old.
|
|
// See errorcounter.h for description of arguments.
|
|
// Iterates over the samples, calling the classifiers in normal/silent mode.
|
|
// If the new_classifier makes a boosting_mode error that the old_classifier
|
|
// does not, and the appropriate, it will then call the new_classifier again
|
|
// with a debug flag and a keep_this argument to find out what is going on.
|
|
static void DebugNewErrors(ShapeClassifier* new_classifier,
|
|
ShapeClassifier* old_classifier,
|
|
CountTypes boosting_mode,
|
|
const FontInfoTable& fontinfo_table,
|
|
const GenericVector<Pix*>& page_images,
|
|
SampleIterator* it);
|
|
|
|
private:
|
|
// Simple struct to hold an array of counts.
|
|
struct Counts {
|
|
Counts();
|
|
// Adds other into this for computing totals.
|
|
void operator+=(const Counts& other);
|
|
|
|
int n[CT_SIZE];
|
|
};
|
|
|
|
// Constructor is private. Only anticipated use of ErrorCounter is via
|
|
// the static ComputeErrorRate.
|
|
ErrorCounter(const UNICHARSET& unicharset, int fontsize);
|
|
~ErrorCounter();
|
|
|
|
// Accumulates the errors from the classifier results on a single sample.
|
|
// Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred.
|
|
// boosting_mode selects the type of error to be used for boosting and the
|
|
// is_error_ member of sample is set according to whether the required type
|
|
// of error occurred. The font_table provides access to font properties
|
|
// for error counting and shape_table is used to understand the relationship
|
|
// between unichar_ids and shape_ids in the results
|
|
bool AccumulateErrors(bool debug, CountTypes boosting_mode,
|
|
const FontInfoTable& font_table,
|
|
const GenericVector<UnicharRating>& results,
|
|
TrainingSample* sample);
|
|
|
|
// Accumulates counts for junk. Counts only whether the junk was correctly
|
|
// rejected or not.
|
|
bool AccumulateJunk(bool debug, const GenericVector<UnicharRating>& results,
|
|
TrainingSample* sample);
|
|
|
|
// Creates a report of the error rate. The report_level controls the detail
|
|
// that is reported to stderr via tprintf:
|
|
// 0 -> no output.
|
|
// >=1 -> bottom-line error rate.
|
|
// >=3 -> font-level error rate.
|
|
// boosting_mode determines the return value. It selects which (un-weighted)
|
|
// error rate to return.
|
|
// The fontinfo_table from MasterTrainer provides the names of fonts.
|
|
// The it determines the current subset of the training samples.
|
|
// If not NULL, the top-choice unichar error rate is saved in unichar_error.
|
|
// If not NULL, the report string is saved in fonts_report.
|
|
// (Ignoring report_level).
|
|
double ReportErrors(int report_level, CountTypes boosting_mode,
|
|
const FontInfoTable& fontinfo_table,
|
|
const SampleIterator& it,
|
|
double* unichar_error,
|
|
STRING* fonts_report);
|
|
|
|
// Sets the report string to a combined human and machine-readable report
|
|
// string of the error rates.
|
|
// Returns false if there is no data, leaving report unchanged, unless
|
|
// even_if_empty is true.
|
|
static bool ReportString(bool even_if_empty, const Counts& counts,
|
|
STRING* report);
|
|
|
|
// Computes the error rates and returns in rates which is an array of size
|
|
// CT_SIZE. Returns false if there is no data, leaving rates unchanged.
|
|
static bool ComputeRates(const Counts& counts, double rates[CT_SIZE]);
|
|
|
|
|
|
// Total scaled error used by boosting algorithms.
|
|
double scaled_error_;
|
|
// Difference in result rating to be thought of as an "equal" choice.
|
|
double rating_epsilon_;
|
|
// Vector indexed by font_id from the samples of error accumulators.
|
|
GenericVector<Counts> font_counts_;
|
|
// Counts of the results that map each unichar_id (from samples) to an
|
|
// incorrect shape_id.
|
|
GENERIC_2D_ARRAY<int> unichar_counts_;
|
|
// Count of the number of times each shape_id occurs, is correct, and multi-
|
|
// unichar.
|
|
GenericVector<int> multi_unichar_counts_;
|
|
// Histogram of scores (as percent) for correct answers.
|
|
STATS ok_score_hist_;
|
|
// Histogram of scores (as percent) for incorrect answers.
|
|
STATS bad_score_hist_;
|
|
// Unicharset for printing character ids in results.
|
|
const UNICHARSET& unicharset_;
|
|
};
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif /* THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_ */
|