tesseract/ccstruct/quspline.cpp

426 lines
14 KiB
C++

/**********************************************************************
* File: quspline.cpp (Formerly qspline.c)
* Description: Code for the QSPLINE class.
* Author: Ray Smith
* Created: Tue Oct 08 17:16:12 BST 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "allheaders.h"
#include "memry.h"
#include "quadlsq.h"
#include "quspline.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#define QSPLINE_PRECISION 16 //no of steps to draw
/**********************************************************************
* QSPLINE::QSPLINE
*
* Constructor to build a QSPLINE given the components used in the old code.
**********************************************************************/
QSPLINE::QSPLINE( //constructor
inT32 count, //no of segments
inT32 *xstarts, //start coords
double *coeffs //coefficients
) {
inT32 index; //segment index
//get memory
xcoords = (inT32 *) alloc_mem ((count + 1) * sizeof (inT32));
quadratics = (QUAD_COEFFS *) alloc_mem (count * sizeof (QUAD_COEFFS));
segments = count;
for (index = 0; index < segments; index++) {
//copy them
xcoords[index] = xstarts[index];
quadratics[index] = QUAD_COEFFS (coeffs[index * 3],
coeffs[index * 3 + 1],
coeffs[index * 3 + 2]);
}
//right edge
xcoords[index] = xstarts[index];
}
/**********************************************************************
* QSPLINE::QSPLINE
*
* Constructor to build a QSPLINE by appproximation of points.
**********************************************************************/
QSPLINE::QSPLINE ( //constructor
int xstarts[], //spline boundaries
int segcount, //no of segments
int xpts[], //points to fit
int ypts[], int pointcount, //no of pts
int degree //fit required
) {
int pointindex; /*no along text line */
int segment; /*segment no */
inT32 *ptcounts; //no in each segment
QLSQ qlsq; /*accumulator */
segments = segcount;
xcoords = (inT32 *) alloc_mem ((segcount + 1) * sizeof (inT32));
ptcounts = (inT32 *) alloc_mem ((segcount + 1) * sizeof (inT32));
quadratics = (QUAD_COEFFS *) alloc_mem (segcount * sizeof (QUAD_COEFFS));
memmove (xcoords, xstarts, (segcount + 1) * sizeof (inT32));
ptcounts[0] = 0; /*none in any yet */
for (segment = 0, pointindex = 0; pointindex < pointcount; pointindex++) {
while (segment < segcount && xpts[pointindex] >= xstarts[segment]) {
segment++; /*try next segment */
/*cumulative counts */
ptcounts[segment] = ptcounts[segment - 1];
}
ptcounts[segment]++; /*no in previous partition */
}
while (segment < segcount) {
segment++;
/*zero the rest */
ptcounts[segment] = ptcounts[segment - 1];
}
for (segment = 0; segment < segcount; segment++) {
qlsq.clear ();
/*first blob */
pointindex = ptcounts[segment];
if (pointindex > 0
&& xpts[pointindex] != xpts[pointindex - 1]
&& xpts[pointindex] != xstarts[segment])
qlsq.add (xstarts[segment],
ypts[pointindex - 1]
+ (ypts[pointindex] - ypts[pointindex - 1])
* (xstarts[segment] - xpts[pointindex - 1])
/ (xpts[pointindex] - xpts[pointindex - 1]));
for (; pointindex < ptcounts[segment + 1]; pointindex++) {
qlsq.add (xpts[pointindex], ypts[pointindex]);
}
if (pointindex > 0 && pointindex < pointcount
&& xpts[pointindex] != xstarts[segment + 1])
qlsq.add (xstarts[segment + 1],
ypts[pointindex - 1]
+ (ypts[pointindex] - ypts[pointindex - 1])
* (xstarts[segment + 1] - xpts[pointindex - 1])
/ (xpts[pointindex] - xpts[pointindex - 1]));
qlsq.fit (degree);
quadratics[segment].a = qlsq.get_a ();
quadratics[segment].b = qlsq.get_b ();
quadratics[segment].c = qlsq.get_c ();
}
free_mem(ptcounts);
}
/**********************************************************************
* QSPLINE::QSPLINE
*
* Constructor to build a QSPLINE from another.
**********************************************************************/
QSPLINE::QSPLINE( //constructor
const QSPLINE &src) {
segments = 0;
xcoords = NULL;
quadratics = NULL;
*this = src;
}
/**********************************************************************
* QSPLINE::~QSPLINE
*
* Destroy a QSPLINE.
**********************************************************************/
QSPLINE::~QSPLINE ( //constructor
) {
if (xcoords != NULL) {
free_mem(xcoords);
xcoords = NULL;
}
if (quadratics != NULL) {
free_mem(quadratics);
quadratics = NULL;
}
}
/**********************************************************************
* QSPLINE::operator=
*
* Copy a QSPLINE
**********************************************************************/
QSPLINE & QSPLINE::operator= ( //assignment
const QSPLINE & source) {
if (xcoords != NULL)
free_mem(xcoords);
if (quadratics != NULL)
free_mem(quadratics);
segments = source.segments;
xcoords = (inT32 *) alloc_mem ((segments + 1) * sizeof (inT32));
quadratics = (QUAD_COEFFS *) alloc_mem (segments * sizeof (QUAD_COEFFS));
memmove (xcoords, source.xcoords, (segments + 1) * sizeof (inT32));
memmove (quadratics, source.quadratics, segments * sizeof (QUAD_COEFFS));
return *this;
}
/**********************************************************************
* QSPLINE::step
*
* Return the total of the step functions between the given coords.
**********************************************************************/
double QSPLINE::step( //find step functions
double x1, //between coords
double x2) {
int index1, index2; //indices of coords
double total; /*total steps */
index1 = spline_index (x1);
index2 = spline_index (x2);
total = 0;
while (index1 < index2) {
total +=
(double) quadratics[index1 + 1].y ((float) xcoords[index1 + 1]);
total -= (double) quadratics[index1].y ((float) xcoords[index1 + 1]);
index1++; /*next segment */
}
return total; /*total steps */
}
/**********************************************************************
* QSPLINE::y
*
* Return the y value at the given x value.
**********************************************************************/
double QSPLINE::y( //evaluate
double x //coord to evaluate at
) const {
inT32 index; //segment index
index = spline_index (x);
return quadratics[index].y (x);//in correct segment
}
/**********************************************************************
* QSPLINE::spline_index
*
* Return the index to the largest xcoord not greater than x.
**********************************************************************/
inT32 QSPLINE::spline_index( //evaluate
double x //coord to evaluate at
) const {
inT32 index; //segment index
inT32 bottom; //bottom of range
inT32 top; //top of range
bottom = 0;
top = segments;
while (top - bottom > 1) {
index = (top + bottom) / 2; //centre of range
if (x >= xcoords[index])
bottom = index; //new min
else
top = index; //new max
}
return bottom;
}
/**********************************************************************
* QSPLINE::move
*
* Reposition spline by vector
**********************************************************************/
void QSPLINE::move( // reposition spline
ICOORD vec // by vector
) {
inT32 segment; //index of segment
inT16 x_shift = vec.x ();
for (segment = 0; segment < segments; segment++) {
xcoords[segment] += x_shift;
quadratics[segment].move (vec);
}
xcoords[segment] += x_shift;
}
/**********************************************************************
* QSPLINE::overlap
*
* Return TRUE if spline2 overlaps this by no more than fraction less
* than the bounds of this.
**********************************************************************/
BOOL8 QSPLINE::overlap( //test overlap
QSPLINE *spline2, //2 cannot be smaller
double fraction //by more than this
) {
int leftlimit; /*common left limit */
int rightlimit; /*common right limit */
leftlimit = xcoords[1];
rightlimit = xcoords[segments - 1];
/*or too non-overlap */
if (spline2->segments < 3 || spline2->xcoords[1] > leftlimit + fraction * (rightlimit - leftlimit)
|| spline2->xcoords[spline2->segments - 1] < rightlimit
- fraction * (rightlimit - leftlimit))
return FALSE;
else
return TRUE;
}
/**********************************************************************
* extrapolate_spline
*
* Extrapolates the spline linearly using the same gradient as the
* quadratic has at either end.
**********************************************************************/
void QSPLINE::extrapolate( //linear extrapolation
double gradient, //gradient to use
int xmin, //new left edge
int xmax //new right edge
) {
int segment; /*current segment of spline */
int dest_segment; //dest index
int *xstarts; //new boundaries
QUAD_COEFFS *quads; //new ones
int increment; //in size
increment = xmin < xcoords[0] ? 1 : 0;
if (xmax > xcoords[segments])
increment++;
if (increment == 0)
return;
xstarts = (int *) alloc_mem ((segments + 1 + increment) * sizeof (int));
quads =
(QUAD_COEFFS *) alloc_mem ((segments + increment) * sizeof (QUAD_COEFFS));
if (xmin < xcoords[0]) {
xstarts[0] = xmin;
quads[0].a = 0;
quads[0].b = gradient;
quads[0].c = y (xcoords[0]) - quads[0].b * xcoords[0];
dest_segment = 1;
}
else
dest_segment = 0;
for (segment = 0; segment < segments; segment++) {
xstarts[dest_segment] = xcoords[segment];
quads[dest_segment] = quadratics[segment];
dest_segment++;
}
xstarts[dest_segment] = xcoords[segment];
if (xmax > xcoords[segments]) {
quads[dest_segment].a = 0;
quads[dest_segment].b = gradient;
quads[dest_segment].c = y (xcoords[segments])
- quads[dest_segment].b * xcoords[segments];
dest_segment++;
xstarts[dest_segment] = xmax + 1;
}
segments = dest_segment;
free_mem(xcoords);
free_mem(quadratics);
xcoords = (inT32 *) xstarts;
quadratics = quads;
}
/**********************************************************************
* QSPLINE::plot
*
* Draw the QSPLINE in the given colour.
**********************************************************************/
#ifndef GRAPHICS_DISABLED
void QSPLINE::plot( //draw it
ScrollView* window, //window to draw in
ScrollView::Color colour //colour to draw in
) const {
inT32 segment; //index of segment
inT16 step; //index of poly piece
double increment; //x increment
double x; //x coord
window->Pen(colour);
for (segment = 0; segment < segments; segment++) {
increment =
(double) (xcoords[segment + 1] -
xcoords[segment]) / QSPLINE_PRECISION;
x = xcoords[segment];
for (step = 0; step <= QSPLINE_PRECISION; step++) {
if (segment == 0 && step == 0)
window->SetCursor(x, quadratics[segment].y (x));
else
window->DrawTo(x, quadratics[segment].y (x));
x += increment;
}
}
}
#endif
void QSPLINE::plot(Pix *pix) const {
if (pix == NULL) {
return;
}
inT32 segment; // Index of segment
inT16 step; // Index of poly piece
double increment; // x increment
double x; // x coord
double height = static_cast<double>(pixGetHeight(pix));
Pta* points = ptaCreate(QSPLINE_PRECISION * segments);
const int kLineWidth = 5;
for (segment = 0; segment < segments; segment++) {
increment = static_cast<double>((xcoords[segment + 1] -
xcoords[segment])) / QSPLINE_PRECISION;
x = xcoords[segment];
for (step = 0; step <= QSPLINE_PRECISION; step++) {
double y = height - quadratics[segment].y(x);
ptaAddPt(points, x, y);
x += increment;
}
}
switch (pixGetDepth(pix)) {
case 1:
pixRenderPolyline(pix, points, kLineWidth, L_SET_PIXELS, 1);
break;
case 32:
pixRenderPolylineArb(pix, points, kLineWidth, 255, 0, 0, 1);
break;
default:
pixRenderPolyline(pix, points, kLineWidth, L_CLEAR_PIXELS, 1);
break;
}
ptaDestroy(&points);
}