tesseract/classify/trainingsample.cpp
theraysmith@gmail.com d11dc049e3 Fixed a lot of compiler/clang warnings
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@1015 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2014-01-25 02:28:51 +00:00

348 lines
14 KiB
C++

// Copyright 2010 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "trainingsample.h"
#include <math.h>
#include "allheaders.h"
#include "helpers.h"
#include "intfeaturemap.h"
#include "normfeat.h"
#include "shapetable.h"
namespace tesseract {
ELISTIZE(TrainingSample)
// Center of randomizing operations.
const int kRandomizingCenter = 128;
// Randomizing factors.
const int TrainingSample::kYShiftValues[kSampleYShiftSize] = {
6, 3, -3, -6, 0
};
const double TrainingSample::kScaleValues[kSampleScaleSize] = {
1.0625, 0.9375, 1.0
};
TrainingSample::~TrainingSample() {
delete [] features_;
delete [] micro_features_;
}
// WARNING! Serialize/DeSerialize do not save/restore the "cache" data
// members, which is mostly the mapped features, and the weight.
// It is assumed these can all be reconstructed from what is saved.
// Writes to the given file. Returns false in case of error.
bool TrainingSample::Serialize(FILE* fp) const {
if (fwrite(&class_id_, sizeof(class_id_), 1, fp) != 1) return false;
if (fwrite(&font_id_, sizeof(font_id_), 1, fp) != 1) return false;
if (fwrite(&page_num_, sizeof(page_num_), 1, fp) != 1) return false;
if (!bounding_box_.Serialize(fp)) return false;
if (fwrite(&num_features_, sizeof(num_features_), 1, fp) != 1) return false;
if (fwrite(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1)
return false;
if (fwrite(&outline_length_, sizeof(outline_length_), 1, fp) != 1)
return false;
if (static_cast<int>(fwrite(features_, sizeof(*features_), num_features_, fp))
!= num_features_)
return false;
if (static_cast<int>(fwrite(micro_features_, sizeof(*micro_features_),
num_micro_features_,
fp)) != num_micro_features_)
return false;
if (fwrite(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) !=
kNumCNParams) return false;
if (fwrite(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount)
return false;
return true;
}
// Creates from the given file. Returns NULL in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
TrainingSample* TrainingSample::DeSerializeCreate(bool swap, FILE* fp) {
TrainingSample* sample = new TrainingSample;
if (sample->DeSerialize(swap, fp)) return sample;
delete sample;
return NULL;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool TrainingSample::DeSerialize(bool swap, FILE* fp) {
if (fread(&class_id_, sizeof(class_id_), 1, fp) != 1) return false;
if (fread(&font_id_, sizeof(font_id_), 1, fp) != 1) return false;
if (fread(&page_num_, sizeof(page_num_), 1, fp) != 1) return false;
if (!bounding_box_.DeSerialize(swap, fp)) return false;
if (fread(&num_features_, sizeof(num_features_), 1, fp) != 1) return false;
if (fread(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1)
return false;
if (fread(&outline_length_, sizeof(outline_length_), 1, fp) != 1)
return false;
if (swap) {
ReverseN(&class_id_, sizeof(class_id_));
ReverseN(&num_features_, sizeof(num_features_));
ReverseN(&num_micro_features_, sizeof(num_micro_features_));
ReverseN(&outline_length_, sizeof(outline_length_));
}
delete [] features_;
features_ = new INT_FEATURE_STRUCT[num_features_];
if (static_cast<int>(fread(features_, sizeof(*features_), num_features_, fp))
!= num_features_)
return false;
delete [] micro_features_;
micro_features_ = new MicroFeature[num_micro_features_];
if (static_cast<int>(fread(micro_features_, sizeof(*micro_features_),
num_micro_features_,
fp)) != num_micro_features_)
return false;
if (fread(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) !=
kNumCNParams) return false;
if (fread(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount)
return false;
return true;
}
// Saves the given features into a TrainingSample.
TrainingSample* TrainingSample::CopyFromFeatures(
const INT_FX_RESULT_STRUCT& fx_info,
const TBOX& bounding_box,
const INT_FEATURE_STRUCT* features,
int num_features) {
TrainingSample* sample = new TrainingSample;
sample->num_features_ = num_features;
sample->features_ = new INT_FEATURE_STRUCT[num_features];
sample->outline_length_ = fx_info.Length;
memcpy(sample->features_, features, num_features * sizeof(features[0]));
sample->geo_feature_[GeoBottom] = bounding_box.bottom();
sample->geo_feature_[GeoTop] = bounding_box.top();
sample->geo_feature_[GeoWidth] = bounding_box.width();
// Generate the cn_feature_ from the fx_info.
sample->cn_feature_[CharNormY] =
MF_SCALE_FACTOR * (fx_info.Ymean - kBlnBaselineOffset);
sample->cn_feature_[CharNormLength] =
MF_SCALE_FACTOR * fx_info.Length / LENGTH_COMPRESSION;
sample->cn_feature_[CharNormRx] = MF_SCALE_FACTOR * fx_info.Rx;
sample->cn_feature_[CharNormRy] = MF_SCALE_FACTOR * fx_info.Ry;
sample->features_are_indexed_ = false;
sample->features_are_mapped_ = false;
return sample;
}
// Returns the cn_feature as a FEATURE_STRUCT* needed by cntraining.
FEATURE_STRUCT* TrainingSample::GetCNFeature() const {
FEATURE feature = NewFeature(&CharNormDesc);
for (int i = 0; i < kNumCNParams; ++i)
feature->Params[i] = cn_feature_[i];
return feature;
}
// Constructs and returns a copy randomized by the method given by
// the randomizer index. If index is out of [0, kSampleRandomSize) then
// an exact copy is returned.
TrainingSample* TrainingSample::RandomizedCopy(int index) const {
TrainingSample* sample = Copy();
if (index >= 0 && index < kSampleRandomSize) {
++index; // Remove the first combination.
int yshift = kYShiftValues[index / kSampleScaleSize];
double scaling = kScaleValues[index % kSampleScaleSize];
for (int i = 0; i < num_features_; ++i) {
double result = (features_[i].X - kRandomizingCenter) * scaling;
result += kRandomizingCenter;
sample->features_[i].X = ClipToRange(static_cast<int>(result + 0.5), 0,
MAX_UINT8);
result = (features_[i].Y - kRandomizingCenter) * scaling;
result += kRandomizingCenter + yshift;
sample->features_[i].Y = ClipToRange(static_cast<int>(result + 0.5), 0,
MAX_UINT8);
}
}
return sample;
}
// Constructs and returns an exact copy.
TrainingSample* TrainingSample::Copy() const {
TrainingSample* sample = new TrainingSample;
sample->class_id_ = class_id_;
sample->font_id_ = font_id_;
sample->weight_ = weight_;
sample->sample_index_ = sample_index_;
sample->num_features_ = num_features_;
if (num_features_ > 0) {
sample->features_ = new INT_FEATURE_STRUCT[num_features_];
memcpy(sample->features_, features_, num_features_ * sizeof(features_[0]));
}
sample->num_micro_features_ = num_micro_features_;
if (num_micro_features_ > 0) {
sample->micro_features_ = new MicroFeature[num_micro_features_];
memcpy(sample->micro_features_, micro_features_,
num_micro_features_ * sizeof(micro_features_[0]));
}
memcpy(sample->cn_feature_, cn_feature_, sizeof(*cn_feature_) * kNumCNParams);
memcpy(sample->geo_feature_, geo_feature_, sizeof(*geo_feature_) * GeoCount);
return sample;
}
// Extracts the needed information from the CHAR_DESC_STRUCT.
void TrainingSample::ExtractCharDesc(int int_feature_type,
int micro_type,
int cn_type,
int geo_type,
CHAR_DESC_STRUCT* char_desc) {
// Extract the INT features.
if (features_ != NULL) delete [] features_;
FEATURE_SET_STRUCT* char_features = char_desc->FeatureSets[int_feature_type];
if (char_features == NULL) {
tprintf("Error: no features to train on of type %s\n",
kIntFeatureType);
num_features_ = 0;
features_ = NULL;
} else {
num_features_ = char_features->NumFeatures;
features_ = new INT_FEATURE_STRUCT[num_features_];
for (int f = 0; f < num_features_; ++f) {
features_[f].X =
static_cast<uinT8>(char_features->Features[f]->Params[IntX]);
features_[f].Y =
static_cast<uinT8>(char_features->Features[f]->Params[IntY]);
features_[f].Theta =
static_cast<uinT8>(char_features->Features[f]->Params[IntDir]);
features_[f].CP_misses = 0;
}
}
// Extract the Micro features.
if (micro_features_ != NULL) delete [] micro_features_;
char_features = char_desc->FeatureSets[micro_type];
if (char_features == NULL) {
tprintf("Error: no features to train on of type %s\n",
kMicroFeatureType);
num_micro_features_ = 0;
micro_features_ = NULL;
} else {
num_micro_features_ = char_features->NumFeatures;
micro_features_ = new MicroFeature[num_micro_features_];
for (int f = 0; f < num_micro_features_; ++f) {
for (int d = 0; d < MFCount; ++d) {
micro_features_[f][d] = char_features->Features[f]->Params[d];
}
}
}
// Extract the CN feature.
char_features = char_desc->FeatureSets[cn_type];
if (char_features == NULL) {
tprintf("Error: no CN feature to train on.\n");
} else {
ASSERT_HOST(char_features->NumFeatures == 1);
cn_feature_[CharNormY] = char_features->Features[0]->Params[CharNormY];
cn_feature_[CharNormLength] =
char_features->Features[0]->Params[CharNormLength];
cn_feature_[CharNormRx] = char_features->Features[0]->Params[CharNormRx];
cn_feature_[CharNormRy] = char_features->Features[0]->Params[CharNormRy];
}
// Extract the Geo feature.
char_features = char_desc->FeatureSets[geo_type];
if (char_features == NULL) {
tprintf("Error: no Geo feature to train on.\n");
} else {
ASSERT_HOST(char_features->NumFeatures == 1);
geo_feature_[GeoBottom] = char_features->Features[0]->Params[GeoBottom];
geo_feature_[GeoTop] = char_features->Features[0]->Params[GeoTop];
geo_feature_[GeoWidth] = char_features->Features[0]->Params[GeoWidth];
}
features_are_indexed_ = false;
features_are_mapped_ = false;
}
// Sets the mapped_features_ from the features_ using the provided
// feature_space to the indexed versions of the features.
void TrainingSample::IndexFeatures(const IntFeatureSpace& feature_space) {
GenericVector<int> indexed_features;
feature_space.IndexAndSortFeatures(features_, num_features_,
&mapped_features_);
features_are_indexed_ = true;
features_are_mapped_ = false;
}
// Sets the mapped_features_ from the features using the provided
// feature_map.
void TrainingSample::MapFeatures(const IntFeatureMap& feature_map) {
GenericVector<int> indexed_features;
feature_map.feature_space().IndexAndSortFeatures(features_, num_features_,
&indexed_features);
feature_map.MapIndexedFeatures(indexed_features, &mapped_features_);
features_are_indexed_ = false;
features_are_mapped_ = true;
}
// Returns a pix representing the sample. (Int features only.)
Pix* TrainingSample::RenderToPix(const UNICHARSET* unicharset) const {
Pix* pix = pixCreate(kIntFeatureExtent, kIntFeatureExtent, 1);
for (int f = 0; f < num_features_; ++f) {
int start_x = features_[f].X;
int start_y = kIntFeatureExtent - features_[f].Y;
double dx = cos((features_[f].Theta / 256.0) * 2.0 * PI - PI);
double dy = -sin((features_[f].Theta / 256.0) * 2.0 * PI - PI);
for (int i = 0; i <= 5; ++i) {
int x = static_cast<int>(start_x + dx * i);
int y = static_cast<int>(start_y + dy * i);
if (x >= 0 && x < 256 && y >= 0 && y < 256)
pixSetPixel(pix, x, y, 1);
}
}
if (unicharset != NULL)
pixSetText(pix, unicharset->id_to_unichar(class_id_));
return pix;
}
// Displays the features in the given window with the given color.
void TrainingSample::DisplayFeatures(ScrollView::Color color,
ScrollView* window) const {
#ifndef GRAPHICS_DISABLED
for (int f = 0; f < num_features_; ++f) {
RenderIntFeature(window, &features_[f], color);
}
#endif // GRAPHICS_DISABLED
}
// Returns a pix of the original sample image. The pix is padded all round
// by padding wherever possible.
// The returned Pix must be pixDestroyed after use.
// If the input page_pix is NULL, NULL is returned.
Pix* TrainingSample::GetSamplePix(int padding, Pix* page_pix) const {
if (page_pix == NULL)
return NULL;
int page_width = pixGetWidth(page_pix);
int page_height = pixGetHeight(page_pix);
TBOX padded_box = bounding_box();
padded_box.pad(padding, padding);
// Clip the padded_box to the limits of the page
TBOX page_box(0, 0, page_width, page_height);
padded_box &= page_box;
Box* box = boxCreate(page_box.left(), page_height - page_box.top(),
page_box.width(), page_box.height());
Pix* sample_pix = pixClipRectangle(page_pix, box, NULL);
boxDestroy(&box);
return sample_pix;
}
} // namespace tesseract