mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-29 20:08:19 +08:00
ff3d550c05
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@219 d0cd1f9f-072b-0410-8dd7-cf729c803f20
856 lines
24 KiB
C++
856 lines
24 KiB
C++
/******************************************************************************
|
|
** Filename: cnTraining.cpp
|
|
** Purpose: Generates a normproto and pffmtable.
|
|
** Author: Dan Johnson
|
|
** Revisment: Christy Russon
|
|
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
|
|
** 5/25/90, DSJ, Adapted to multiple feature types.
|
|
** Tuesday, May 17, 1998 Changes made to make feature specific and
|
|
** simplify structures. First step in simplifying training process.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------**/
|
|
#include "oldlist.h"
|
|
#include "efio.h"
|
|
#include "emalloc.h"
|
|
#include "featdefs.h"
|
|
#include "tessopt.h"
|
|
#include "ocrfeatures.h"
|
|
#include "general.h"
|
|
#include "clusttool.h"
|
|
#include "cluster.h"
|
|
#include "name2char.h"
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "unichar.h"
|
|
|
|
#define MAXNAMESIZE 80
|
|
#define MAX_NUM_SAMPLES 10000
|
|
#define PROGRAM_FEATURE_TYPE "cn"
|
|
#define MINSD (1.0f / 64.0f)
|
|
|
|
int row_number; /* cjn: fixes link problem */
|
|
|
|
typedef struct
|
|
{
|
|
char *Label;
|
|
int SampleCount;
|
|
LIST List;
|
|
}
|
|
LABELEDLISTNODE, *LABELEDLIST;
|
|
|
|
#define round(x,frag)(floor(x/frag+.5)*frag)
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Public Function Prototypes
|
|
----------------------------------------------------------------------------**/
|
|
int main (
|
|
int argc,
|
|
char **argv);
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Function Prototypes
|
|
----------------------------------------------------------------------------**/
|
|
void ParseArguments(
|
|
int argc,
|
|
char **argv);
|
|
|
|
char *GetNextFilename ();
|
|
|
|
void ReadTrainingSamples (
|
|
FILE *File,
|
|
LIST* TrainingSamples);
|
|
|
|
LABELEDLIST FindList (
|
|
LIST List,
|
|
char *Label);
|
|
|
|
LABELEDLIST NewLabeledList (
|
|
char *Label);
|
|
|
|
void WriteTrainingSamples (
|
|
char *Directory,
|
|
LIST CharList);
|
|
|
|
void WriteNormProtos (
|
|
char *Directory,
|
|
LIST LabeledProtoList,
|
|
CLUSTERER *Clusterer);
|
|
|
|
void FreeTrainingSamples (
|
|
LIST CharList);
|
|
|
|
void FreeNormProtoList (
|
|
LIST CharList);
|
|
|
|
void FreeLabeledList (
|
|
LABELEDLIST LabeledList);
|
|
|
|
CLUSTERER *SetUpForClustering(
|
|
LABELEDLIST CharSample);
|
|
/*
|
|
PARAMDESC *ConvertToPARAMDESC(
|
|
PARAM_DESC* Param_Desc,
|
|
int N);
|
|
*/
|
|
void AddToNormProtosList(
|
|
LIST* NormProtoList,
|
|
LIST ProtoList,
|
|
char* CharName);
|
|
|
|
void WriteProtos(
|
|
FILE *File,
|
|
uinT16 N,
|
|
LIST ProtoList,
|
|
BOOL8 WriteSigProtos,
|
|
BOOL8 WriteInsigProtos);
|
|
|
|
int NumberOfProtos(
|
|
LIST ProtoList,
|
|
BOOL8 CountSigProtos,
|
|
BOOL8 CountInsigProtos);
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Global Data Definitions and Declarations
|
|
----------------------------------------------------------------------------**/
|
|
static char FontName[MAXNAMESIZE];
|
|
/* globals used for parsing command line arguments */
|
|
static char *Directory = NULL;
|
|
static int MaxNumSamples = MAX_NUM_SAMPLES;
|
|
static int Argc;
|
|
static char **Argv;
|
|
|
|
/* globals used to control what information is saved in the output file */
|
|
static BOOL8 ShowAllSamples = FALSE;
|
|
static BOOL8 ShowSignificantProtos = TRUE;
|
|
static BOOL8 ShowInsignificantProtos = FALSE;
|
|
|
|
/* global variable to hold configuration parameters to control clustering */
|
|
//-M 0.025 -B 0.05 -I 0.8 -C 1e-3
|
|
static CLUSTERCONFIG Config =
|
|
{
|
|
elliptical, 0.025, 0.05, 0.8, 1e-3, 0
|
|
};
|
|
|
|
static FLOAT32 RoundingAccuracy = 0.0;
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Public Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
int main (
|
|
int argc,
|
|
char **argv)
|
|
|
|
/*
|
|
** Parameters:
|
|
** argc number of command line arguments
|
|
** argv array of command line arguments
|
|
** Globals: none
|
|
** Operation:
|
|
** This program reads in a text file consisting of feature
|
|
** samples from a training page in the following format:
|
|
**
|
|
** FontName CharName NumberOfFeatureTypes(N)
|
|
** FeatureTypeName1 NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** FeatureTypeName2 NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** ...
|
|
** FeatureTypeNameN NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** FontName CharName ...
|
|
**
|
|
** It then appends these samples into a separate file for each
|
|
** character. The name of the file is
|
|
**
|
|
** DirectoryName/FontName/CharName.FeatureTypeName
|
|
**
|
|
** The DirectoryName can be specified via a command
|
|
** line argument. If not specified, it defaults to the
|
|
** current directory. The format of the resulting files is:
|
|
**
|
|
** NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** NumberOfFeatures(M)
|
|
** ...
|
|
**
|
|
** The output files each have a header which describes the
|
|
** type of feature which the file contains. This header is
|
|
** in the format required by the clusterer. A command line
|
|
** argument can also be used to specify that only the first
|
|
** N samples of each class should be used.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 08:56:17 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
char *PageName;
|
|
FILE *TrainingPage;
|
|
LIST CharList = NIL;
|
|
CLUSTERER *Clusterer = NULL;
|
|
LIST ProtoList = NIL;
|
|
LIST NormProtoList = NIL;
|
|
LIST pCharList;
|
|
LABELEDLIST CharSample;
|
|
|
|
ParseArguments (argc, argv);
|
|
while ((PageName = GetNextFilename()) != NULL)
|
|
{
|
|
printf ("Reading %s ...\n", PageName);
|
|
TrainingPage = Efopen (PageName, "r");
|
|
ReadTrainingSamples (TrainingPage, &CharList);
|
|
fclose (TrainingPage);
|
|
//WriteTrainingSamples (Directory, CharList);
|
|
}
|
|
printf("Clustering ...\n");
|
|
pCharList = CharList;
|
|
iterate(pCharList)
|
|
{
|
|
//Cluster
|
|
CharSample = (LABELEDLIST) first_node (pCharList);
|
|
//printf ("\nClustering %s ...", CharSample->Label);
|
|
Clusterer = SetUpForClustering(CharSample);
|
|
float SavedMinSamples = Config.MinSamples;
|
|
Config.MagicSamples = CharSample->SampleCount;
|
|
while (Config.MinSamples > 0.001) {
|
|
ProtoList = ClusterSamples(Clusterer, &Config);
|
|
if (NumberOfProtos(ProtoList, 1, 0) > 0)
|
|
break;
|
|
else {
|
|
Config.MinSamples *= 0.95;
|
|
printf("0 significant protos for %s."
|
|
" Retrying clustering with MinSamples = %f%%\n",
|
|
CharSample->Label, Config.MinSamples);
|
|
}
|
|
}
|
|
Config.MinSamples = SavedMinSamples;
|
|
AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label);
|
|
}
|
|
FreeTrainingSamples (CharList);
|
|
WriteNormProtos (Directory, NormProtoList, Clusterer);
|
|
FreeClusterer(Clusterer);
|
|
FreeProtoList(&ProtoList);
|
|
FreeNormProtoList(NormProtoList);
|
|
printf ("\n");
|
|
return 0;
|
|
} // main
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
void ParseArguments(
|
|
int argc,
|
|
char **argv)
|
|
|
|
/*
|
|
** Parameters:
|
|
** argc number of command line arguments to parse
|
|
** argv command line arguments
|
|
** Globals:
|
|
** ShowAllSamples flag controlling samples display
|
|
** ShowSignificantProtos flag controlling proto display
|
|
** ShowInsignificantProtos flag controlling proto display
|
|
** Config current clustering parameters
|
|
** tessoptarg, tessoptind defined by tessopt sys call
|
|
** Argc, Argv global copies of argc and argv
|
|
** Operation:
|
|
** This routine parses the command line arguments that were
|
|
** passed to the program. The legal arguments are:
|
|
** -d "turn off display of samples"
|
|
** -p "turn off significant protos"
|
|
** -n "turn off insignificant proto"
|
|
** -S [ spherical | elliptical | mixed | automatic ]
|
|
** -M MinSamples "min samples per prototype (%)"
|
|
** -B MaxIllegal "max illegal chars per cluster (%)"
|
|
** -I Independence "0 to 1"
|
|
** -C Confidence "1e-200 to 1.0"
|
|
** -D Directory
|
|
** -N MaxNumSamples
|
|
** -R RoundingAccuracy
|
|
** Return: none
|
|
** Exceptions: Illegal options terminate the program.
|
|
** History: 7/24/89, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
int Option;
|
|
int ParametersRead;
|
|
BOOL8 Error;
|
|
|
|
Error = FALSE;
|
|
Argc = argc;
|
|
Argv = argv;
|
|
while (( Option = tessopt( argc, argv, "R:N:D:C:I:M:B:S:d:n:p" )) != EOF )
|
|
{
|
|
switch ( Option )
|
|
{
|
|
case 'n':
|
|
sscanf(tessoptarg,"%d", &ParametersRead);
|
|
ShowInsignificantProtos = ParametersRead;
|
|
break;
|
|
case 'p':
|
|
sscanf(tessoptarg,"%d", &ParametersRead);
|
|
ShowSignificantProtos = ParametersRead;
|
|
break;
|
|
case 'd':
|
|
ShowAllSamples = FALSE;
|
|
break;
|
|
case 'C':
|
|
ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.Confidence > 1 ) Config.Confidence = 1;
|
|
else if ( Config.Confidence < 0 ) Config.Confidence = 0;
|
|
break;
|
|
case 'I':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.Independence > 1 ) Config.Independence = 1;
|
|
else if ( Config.Independence < 0 ) Config.Independence = 0;
|
|
break;
|
|
case 'M':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.MinSamples > 1 ) Config.MinSamples = 1;
|
|
else if ( Config.MinSamples < 0 ) Config.MinSamples = 0;
|
|
break;
|
|
case 'B':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1;
|
|
else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0;
|
|
break;
|
|
case 'R':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( RoundingAccuracy > 0.01 ) RoundingAccuracy = 0.01;
|
|
else if ( RoundingAccuracy < 0.0 ) RoundingAccuracy = 0.0;
|
|
break;
|
|
case 'S':
|
|
switch ( tessoptarg[0] )
|
|
{
|
|
case 's': Config.ProtoStyle = spherical; break;
|
|
case 'e': Config.ProtoStyle = elliptical; break;
|
|
case 'm': Config.ProtoStyle = mixed; break;
|
|
case 'a': Config.ProtoStyle = automatic; break;
|
|
default: Error = TRUE;
|
|
}
|
|
break;
|
|
case 'D':
|
|
Directory = tessoptarg;
|
|
break;
|
|
case 'N':
|
|
if (sscanf (tessoptarg, "%d", &MaxNumSamples) != 1 ||
|
|
MaxNumSamples <= 0)
|
|
Error = TRUE;
|
|
break;
|
|
case '?':
|
|
Error = TRUE;
|
|
break;
|
|
}
|
|
if ( Error )
|
|
{
|
|
fprintf (stderr, "usage: %s [-D] [-P] [-N]\n", argv[0] );
|
|
fprintf (stderr, "\t[-S ProtoStyle]\n");
|
|
fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence] [-C Confidence]\n" );
|
|
fprintf (stderr, "\t[-d directory] [-n MaxNumSamples] [ TrainingPage ... ]\n");
|
|
exit (2);
|
|
}
|
|
}
|
|
} /* ParseArguments */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
char *GetNextFilename ()
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** tessoptind defined by tessopt sys call
|
|
** Argc, Argv global copies of argc and argv
|
|
** Operation:
|
|
** This routine returns the next command line argument. If
|
|
** there are no remaining command line arguments, it returns
|
|
** NULL. This routine should only be called after all option
|
|
** arguments have been parsed and removed with ParseArguments.
|
|
** Return: Next command line argument or NULL.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 09:34:12 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
if (tessoptind < Argc)
|
|
return (Argv [tessoptind++]);
|
|
else
|
|
return (NULL);
|
|
|
|
} /* GetNextFilename */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void ReadTrainingSamples (
|
|
FILE *File,
|
|
LIST* TrainingSamples)
|
|
|
|
/*
|
|
** Parameters:
|
|
** File open text file to read samples from
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine reads training samples from a file and
|
|
** places them into a data structure which organizes the
|
|
** samples by FontName and CharName. It then returns this
|
|
** data structure.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 13:11:39 1989, DSJ, Created.
|
|
** Tue May 17 1998 simplifications to structure, illiminated
|
|
** font, and feature specification levels of structure.
|
|
*/
|
|
|
|
{
|
|
char unichar[UNICHAR_LEN + 1];
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSamples;
|
|
CHAR_DESC CharDesc;
|
|
int Type, i;
|
|
|
|
while (fscanf (File, "%s %s", FontName, unichar) == 2) {
|
|
CharSample = FindList (*TrainingSamples, unichar);
|
|
if (CharSample == NULL) {
|
|
CharSample = NewLabeledList (unichar);
|
|
*TrainingSamples = push (*TrainingSamples, CharSample);
|
|
}
|
|
CharDesc = ReadCharDescription (File);
|
|
Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE);
|
|
FeatureSamples = CharDesc->FeatureSets[Type];
|
|
for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) {
|
|
FEATURE f = FeatureSamples->Features[feature];
|
|
for (int dim =0; dim < f->Type->NumParams; ++dim)
|
|
f->Params[dim] += UniformRandomNumber(-MINSD, MINSD);
|
|
}
|
|
CharSample->List = push (CharSample->List, FeatureSamples);
|
|
CharSample->SampleCount++;
|
|
for (i = 0; i < CharDesc->NumFeatureSets; i++)
|
|
if (Type != i)
|
|
FreeFeatureSet(CharDesc->FeatureSets[i]);
|
|
free (CharDesc);
|
|
}
|
|
} // ReadTrainingSamples
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LABELEDLIST FindList (
|
|
LIST List,
|
|
char *Label)
|
|
|
|
/*
|
|
** Parameters:
|
|
** List list to search
|
|
** Label label to search for
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine searches thru a list of labeled lists to find
|
|
** a list with the specified label. If a matching labeled list
|
|
** cannot be found, NULL is returned.
|
|
** Return: Labeled list with the specified Label or NULL.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 15:57:41 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
iterate (List)
|
|
{
|
|
LabeledList = (LABELEDLIST) first_node (List);
|
|
if (strcmp (LabeledList->Label, Label) == 0)
|
|
return (LabeledList);
|
|
}
|
|
return (NULL);
|
|
|
|
} /* FindList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LABELEDLIST NewLabeledList (
|
|
char *Label)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Label label for new list
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine allocates a new, empty labeled list and gives
|
|
** it the specified label.
|
|
** Return: New, empty labeled list.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:08:46 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
LabeledList = (LABELEDLIST) (char*)Emalloc (sizeof (LABELEDLISTNODE));
|
|
LabeledList->Label = (char*)Emalloc (strlen (Label)+1);
|
|
strcpy (LabeledList->Label, Label);
|
|
LabeledList->List = NIL;
|
|
LabeledList->SampleCount = 0;
|
|
return (LabeledList);
|
|
|
|
} /* NewLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void WriteTrainingSamples (
|
|
char *Directory,
|
|
LIST CharList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Directory directory to place sample files into
|
|
** FontList list of fonts used in the training samples
|
|
** Globals:
|
|
** MaxNumSamples max number of samples per class to write
|
|
** Operation:
|
|
** This routine writes the specified samples into files which
|
|
** are organized according to the font name and character name
|
|
** of the samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSet;
|
|
LIST FeatureList;
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
int NumSamples;
|
|
|
|
iterate (CharList) // iterate thru all of the fonts
|
|
{
|
|
CharSample = (LABELEDLIST) first_node (CharList);
|
|
|
|
// construct the full pathname for the current samples file
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "Merged");
|
|
strcat (Filename, "/");
|
|
strcat (Filename, CharSample->Label);
|
|
strcat (Filename, ".");
|
|
strcat (Filename, PROGRAM_FEATURE_TYPE);
|
|
printf ("\nWriting %s ...", Filename);
|
|
|
|
/* if file does not exist, create a new one with an appropriate
|
|
header; otherwise append samples to the existing file */
|
|
File = fopen (Filename, "r");
|
|
if (File == NULL)
|
|
{
|
|
File = Efopen (Filename, "w");
|
|
WriteOldParamDesc
|
|
(File, FeatureDefs.FeatureDesc[ShortNameToFeatureType (PROGRAM_FEATURE_TYPE)]);
|
|
}
|
|
else
|
|
{
|
|
fclose (File);
|
|
File = Efopen (Filename, "a");
|
|
}
|
|
|
|
// append samples onto the file
|
|
FeatureList = CharSample->List;
|
|
NumSamples = 0;
|
|
iterate (FeatureList)
|
|
{
|
|
//if (NumSamples >= MaxNumSamples) break;
|
|
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
WriteFeatureSet (File, FeatureSet);
|
|
NumSamples++;
|
|
}
|
|
fclose (File);
|
|
}
|
|
} /* WriteTrainingSamples */
|
|
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
void WriteNormProtos (
|
|
char *Directory,
|
|
LIST LabeledProtoList,
|
|
CLUSTERER *Clusterer)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Directory directory to place sample files into
|
|
** Globals:
|
|
** MaxNumSamples max number of samples per class to write
|
|
** Operation:
|
|
** This routine writes the specified samples into files which
|
|
** are organized according to the font name and character name
|
|
** of the samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
LABELEDLIST LabeledProto;
|
|
int N;
|
|
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "normproto");
|
|
printf ("\nWriting %s ...", Filename);
|
|
File = Efopen (Filename, "w");
|
|
fprintf(File,"%0d\n",Clusterer->SampleSize);
|
|
WriteParamDesc(File,Clusterer->SampleSize,Clusterer->ParamDesc);
|
|
iterate(LabeledProtoList)
|
|
{
|
|
LabeledProto = (LABELEDLIST) first_node (LabeledProtoList);
|
|
N = NumberOfProtos(LabeledProto->List,
|
|
ShowSignificantProtos, ShowInsignificantProtos);
|
|
if (N < 1) {
|
|
printf ("\nError! Not enough protos for %s: %d protos"
|
|
" (%d significant protos"
|
|
", %d insignificant protos)\n",
|
|
LabeledProto->Label, N,
|
|
NumberOfProtos(LabeledProto->List, 1, 0),
|
|
NumberOfProtos(LabeledProto->List, 0, 1));
|
|
exit(1);
|
|
}
|
|
fprintf(File, "\n%s %d\n", LabeledProto->Label, N);
|
|
WriteProtos(File, Clusterer->SampleSize, LabeledProto->List,
|
|
ShowSignificantProtos, ShowInsignificantProtos);
|
|
}
|
|
fclose (File);
|
|
|
|
} // WriteNormProtos
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void FreeTrainingSamples (
|
|
LIST CharList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** FontList list of all fonts in document
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine deallocates all of the space allocated to
|
|
** the specified list of training samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSet;
|
|
LIST FeatureList;
|
|
|
|
|
|
printf ("\nFreeTrainingSamples...");
|
|
iterate (CharList) /* iterate thru all of the fonts */
|
|
{
|
|
CharSample = (LABELEDLIST) first_node (CharList);
|
|
FeatureList = CharSample->List;
|
|
iterate (FeatureList) /* iterate thru all of the classes */
|
|
{
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
FreeFeatureSet (FeatureSet);
|
|
}
|
|
FreeLabeledList (CharSample);
|
|
}
|
|
destroy (CharList);
|
|
|
|
} /* FreeTrainingSamples */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
void FreeNormProtoList (
|
|
LIST CharList)
|
|
|
|
{
|
|
LABELEDLIST CharSample;
|
|
|
|
iterate (CharList) /* iterate thru all of the fonts */
|
|
{
|
|
CharSample = (LABELEDLIST) first_node (CharList);
|
|
FreeLabeledList (CharSample);
|
|
}
|
|
destroy (CharList);
|
|
|
|
} // FreeNormProtoList
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void FreeLabeledList (
|
|
LABELEDLIST LabeledList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** LabeledList labeled list to be freed
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine deallocates all of the memory consumed by
|
|
** a labeled list. It does not free any memory which may be
|
|
** consumed by the items in the list.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 17:52:45 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
destroy (LabeledList->List);
|
|
free (LabeledList->Label);
|
|
free (LabeledList);
|
|
|
|
} /* FreeLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
CLUSTERER *SetUpForClustering(
|
|
LABELEDLIST CharSample)
|
|
|
|
/*
|
|
** Parameters:
|
|
** CharSample: LABELEDLIST that holds all the feature information for a
|
|
** given character.
|
|
** Globals:
|
|
** None
|
|
** Operation:
|
|
** This routine reads samples from a LABELEDLIST and enters
|
|
** those samples into a clusterer data structure. This
|
|
** data structure is then returned to the caller.
|
|
** Return:
|
|
** Pointer to new clusterer data structure.
|
|
** Exceptions:
|
|
** None
|
|
** History:
|
|
** 8/16/89, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
uinT16 N;
|
|
int i, j;
|
|
FLOAT32 *Sample = NULL;
|
|
CLUSTERER *Clusterer;
|
|
inT32 CharID;
|
|
LIST FeatureList = NULL;
|
|
FEATURE_SET FeatureSet = NULL;
|
|
FEATURE_DESC FeatureDesc = NULL;
|
|
// PARAM_DESC* ParamDesc;
|
|
|
|
FeatureDesc = FeatureDefs.FeatureDesc[ShortNameToFeatureType(PROGRAM_FEATURE_TYPE)];
|
|
N = FeatureDesc->NumParams;
|
|
//ParamDesc = ConvertToPARAMDESC(FeatureDesc->ParamDesc, N);
|
|
Clusterer = MakeClusterer(N,FeatureDesc->ParamDesc);
|
|
// free(ParamDesc);
|
|
|
|
FeatureList = CharSample->List;
|
|
CharID = 0;
|
|
iterate(FeatureList)
|
|
{
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
for (i=0; i < FeatureSet->MaxNumFeatures; i++)
|
|
{
|
|
if (Sample == NULL)
|
|
Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (j=0; j < N; j++)
|
|
if (RoundingAccuracy != 0.0)
|
|
Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy);
|
|
else
|
|
Sample[j] = FeatureSet->Features[i]->Params[j];
|
|
MakeSample (Clusterer, Sample, CharID);
|
|
}
|
|
CharID++;
|
|
}
|
|
if ( Sample != NULL ) free( Sample );
|
|
return( Clusterer );
|
|
|
|
} /* SetUpForClustering */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AddToNormProtosList(
|
|
LIST* NormProtoList,
|
|
LIST ProtoList,
|
|
char* CharName)
|
|
{
|
|
PROTOTYPE* Proto;
|
|
LABELEDLIST LabeledProtoList;
|
|
|
|
LabeledProtoList = NewLabeledList(CharName);
|
|
iterate(ProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node (ProtoList);
|
|
LabeledProtoList->List = push(LabeledProtoList->List, Proto);
|
|
}
|
|
*NormProtoList = push(*NormProtoList, LabeledProtoList);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
void WriteProtos(
|
|
FILE *File,
|
|
uinT16 N,
|
|
LIST ProtoList,
|
|
BOOL8 WriteSigProtos,
|
|
BOOL8 WriteInsigProtos)
|
|
{
|
|
PROTOTYPE *Proto;
|
|
|
|
// write prototypes
|
|
iterate(ProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node ( ProtoList );
|
|
if (( Proto->Significant && WriteSigProtos ) ||
|
|
( ! Proto->Significant && WriteInsigProtos ) )
|
|
WritePrototype( File, N, Proto );
|
|
}
|
|
} // WriteProtos
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int NumberOfProtos(
|
|
LIST ProtoList,
|
|
BOOL8 CountSigProtos,
|
|
BOOL8 CountInsigProtos)
|
|
{
|
|
int N = 0;
|
|
PROTOTYPE *Proto;
|
|
|
|
iterate(ProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node ( ProtoList );
|
|
if (( Proto->Significant && CountSigProtos ) ||
|
|
( ! Proto->Significant && CountInsigProtos ) )
|
|
N++;
|
|
}
|
|
return(N);
|
|
}
|