mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 22:43:45 +08:00
0e868ef377
Tha, Vie, Kan, Tel etc. There is a new overlap detector that detects when diacritics cause a big increase in textline overlap. In such cases, diacritics from overlap regions are kept separate from layout analysis completely, allowing textline formation to happen without them. The diacritics are then assigned to 0, 1 or 2 close words at the end of layout analysis, using and modifying an old noise detection data path. The stored diacritics are used or not during recognition according to the character classifier's liking for them.
1644 lines
67 KiB
C++
1644 lines
67 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: colfind.cpp
|
|
// Description: Class to hold BLOBNBOXs in a grid for fast access
|
|
// to neighbours.
|
|
// Author: Ray Smith
|
|
// Created: Wed Jun 06 17:22:01 PDT 2007
|
|
//
|
|
// (C) Copyright 2007, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#endif
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include "colfind.h"
|
|
|
|
#include "ccnontextdetect.h"
|
|
#include "colpartition.h"
|
|
#include "colpartitionset.h"
|
|
#include "equationdetectbase.h"
|
|
#include "linefind.h"
|
|
#include "normalis.h"
|
|
#include "strokewidth.h"
|
|
#include "blobbox.h"
|
|
#include "scrollview.h"
|
|
#include "tablefind.h"
|
|
#include "params.h"
|
|
#include "workingpartset.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Minimum width (in pixels) to be considered when making columns.
|
|
// TODO(rays) convert to inches, dependent on resolution.
|
|
const int kMinColumnWidth = 100;
|
|
// When assigning columns, the max number of misfit grid rows/ColPartitionSets
|
|
// that can be ignored.
|
|
const int kMaxIncompatibleColumnCount = 2;
|
|
// Min fraction of ColPartition height to be overlapping for margin purposes.
|
|
const double kMarginOverlapFraction = 0.25;
|
|
// Max fraction of mean_column_gap_ for the gap between two partitions within a
|
|
// column to allow them to merge.
|
|
const double kHorizontalGapMergeFraction = 0.5;
|
|
// Min fraction of grid size to not be considered likely noise.
|
|
const double kMinNonNoiseFraction = 0.5;
|
|
// Minimum gutter width as a fraction of gridsize
|
|
const double kMinGutterWidthGrid = 0.5;
|
|
// Max multiple of a partition's median size as a distance threshold for
|
|
// adding noise blobs.
|
|
const double kMaxDistToPartSizeRatio = 1.5;
|
|
|
|
BOOL_VAR(textord_tabfind_show_initial_partitions,
|
|
false, "Show partition bounds");
|
|
BOOL_VAR(textord_tabfind_show_reject_blobs,
|
|
false, "Show blobs rejected as noise");
|
|
INT_VAR(textord_tabfind_show_partitions, 0,
|
|
"Show partition bounds, waiting if >1");
|
|
BOOL_VAR(textord_tabfind_show_columns, false, "Show column bounds");
|
|
BOOL_VAR(textord_tabfind_show_blocks, false, "Show final block bounds");
|
|
BOOL_VAR(textord_tabfind_find_tables, true, "run table detection");
|
|
|
|
ScrollView* ColumnFinder::blocks_win_ = NULL;
|
|
|
|
// Gridsize is an estimate of the text size in the image. A suitable value
|
|
// is in TO_BLOCK::line_size after find_components has been used to make
|
|
// the blobs.
|
|
// bleft and tright are the bounds of the image (or rectangle) being processed.
|
|
// vlines is a (possibly empty) list of TabVector and vertical_x and y are
|
|
// the sum logical vertical vector produced by LineFinder::FindVerticalLines.
|
|
ColumnFinder::ColumnFinder(int gridsize,
|
|
const ICOORD& bleft, const ICOORD& tright,
|
|
int resolution, bool cjk_script,
|
|
double aligned_gap_fraction,
|
|
TabVector_LIST* vlines, TabVector_LIST* hlines,
|
|
int vertical_x, int vertical_y)
|
|
: TabFind(gridsize, bleft, tright, vlines, vertical_x, vertical_y,
|
|
resolution),
|
|
cjk_script_(cjk_script),
|
|
min_gutter_width_(static_cast<int>(kMinGutterWidthGrid * gridsize)),
|
|
mean_column_gap_(tright.x() - bleft.x()),
|
|
tabfind_aligned_gap_fraction_(aligned_gap_fraction),
|
|
reskew_(1.0f, 0.0f), rotation_(1.0f, 0.0f), rerotate_(1.0f, 0.0f),
|
|
best_columns_(NULL), stroke_width_(NULL),
|
|
part_grid_(gridsize, bleft, tright), nontext_map_(NULL),
|
|
projection_(resolution),
|
|
denorm_(NULL), input_blobs_win_(NULL), equation_detect_(NULL) {
|
|
TabVector_IT h_it(&horizontal_lines_);
|
|
h_it.add_list_after(hlines);
|
|
}
|
|
|
|
ColumnFinder::~ColumnFinder() {
|
|
column_sets_.delete_data_pointers();
|
|
if (best_columns_ != NULL) {
|
|
delete [] best_columns_;
|
|
}
|
|
if (stroke_width_ != NULL)
|
|
delete stroke_width_;
|
|
delete input_blobs_win_;
|
|
pixDestroy(&nontext_map_);
|
|
while (denorm_ != NULL) {
|
|
DENORM* dead_denorm = denorm_;
|
|
denorm_ = const_cast<DENORM*>(denorm_->predecessor());
|
|
delete dead_denorm;
|
|
}
|
|
|
|
// The ColPartitions are destroyed automatically, but any boxes in
|
|
// the noise_parts_ list are owned and need to be deleted explicitly.
|
|
ColPartition_IT part_it(&noise_parts_);
|
|
for (part_it.mark_cycle_pt(); !part_it.cycled_list(); part_it.forward()) {
|
|
ColPartition* part = part_it.data();
|
|
part->DeleteBoxes();
|
|
}
|
|
// Likewise any boxes in the good_parts_ list need to be deleted.
|
|
// These are just the image parts. Text parts have already given their
|
|
// boxes on to the TO_BLOCK, and have empty lists.
|
|
part_it.set_to_list(&good_parts_);
|
|
for (part_it.mark_cycle_pt(); !part_it.cycled_list(); part_it.forward()) {
|
|
ColPartition* part = part_it.data();
|
|
part->DeleteBoxes();
|
|
}
|
|
// Also, any blobs on the image_bblobs_ list need to have their cblobs
|
|
// deleted. This only happens if there has been an early return from
|
|
// FindColumns, as in a normal return, the blobs go into the grid and
|
|
// end up in noise_parts_, good_parts_ or the output blocks.
|
|
BLOBNBOX_IT bb_it(&image_bblobs_);
|
|
for (bb_it.mark_cycle_pt(); !bb_it.cycled_list(); bb_it.forward()) {
|
|
BLOBNBOX* bblob = bb_it.data();
|
|
delete bblob->cblob();
|
|
}
|
|
}
|
|
|
|
// Performs initial processing on the blobs in the input_block:
|
|
// Setup the part_grid, stroke_width_, nontext_map.
|
|
// Obvious noise blobs are filtered out and used to mark the nontext_map_.
|
|
// Initial stroke-width analysis is used to get local text alignment
|
|
// direction, so the textline projection_ map can be setup.
|
|
// On return, IsVerticallyAlignedText may be called (now optionally) to
|
|
// determine the gross textline alignment of the page.
|
|
void ColumnFinder::SetupAndFilterNoise(Pix* photo_mask_pix,
|
|
TO_BLOCK* input_block) {
|
|
part_grid_.Init(gridsize(), bleft(), tright());
|
|
if (stroke_width_ != NULL)
|
|
delete stroke_width_;
|
|
stroke_width_ = new StrokeWidth(gridsize(), bleft(), tright());
|
|
min_gutter_width_ = static_cast<int>(kMinGutterWidthGrid * gridsize());
|
|
input_block->ReSetAndReFilterBlobs();
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (textord_tabfind_show_blocks) {
|
|
input_blobs_win_ = MakeWindow(0, 0, "Filtered Input Blobs");
|
|
input_block->plot_graded_blobs(input_blobs_win_);
|
|
}
|
|
#endif // GRAPHICS_DISABLED
|
|
SetBlockRuleEdges(input_block);
|
|
pixDestroy(&nontext_map_);
|
|
// Run a preliminary strokewidth neighbour detection on the medium blobs.
|
|
stroke_width_->SetNeighboursOnMediumBlobs(input_block);
|
|
CCNonTextDetect nontext_detect(gridsize(), bleft(), tright());
|
|
// Remove obvious noise and make the initial non-text map.
|
|
nontext_map_ = nontext_detect.ComputeNonTextMask(textord_debug_tabfind,
|
|
photo_mask_pix, input_block);
|
|
stroke_width_->FindTextlineDirectionAndFixBrokenCJK(cjk_script_, input_block);
|
|
// Clear the strokewidth grid ready for rotation or leader finding.
|
|
stroke_width_->Clear();
|
|
}
|
|
|
|
// Tests for vertical alignment of text (returning true if so), and generates
|
|
// a list of blobs of moderate aspect ratio, in the most frequent writing
|
|
// direction (in osd_blobs) for orientation and script detection to test
|
|
// the character orientation.
|
|
// block is the single block for the whole page or rectangle to be OCRed.
|
|
// Note that the vertical alignment may be due to text whose writing direction
|
|
// is vertical, like say Japanese, or due to text whose writing direction is
|
|
// horizontal but whose text appears vertically aligned because the image is
|
|
// not the right way up.
|
|
bool ColumnFinder::IsVerticallyAlignedText(double find_vertical_text_ratio,
|
|
TO_BLOCK* block,
|
|
BLOBNBOX_CLIST* osd_blobs) {
|
|
return stroke_width_->TestVerticalTextDirection(find_vertical_text_ratio,
|
|
block, osd_blobs);
|
|
}
|
|
|
|
// Rotates the blobs and the TabVectors so that the gross writing direction
|
|
// (text lines) are horizontal and lines are read down the page.
|
|
// Applied rotation stored in rotation_.
|
|
// A second rotation is calculated for application during recognition to
|
|
// make the rotated blobs upright for recognition.
|
|
// Subsequent rotation stored in text_rotation_.
|
|
//
|
|
// Arguments:
|
|
// vertical_text_lines true if the text lines are vertical.
|
|
// recognition_rotation [0..3] is the number of anti-clockwise 90 degree
|
|
// rotations from osd required for the text to be upright and readable.
|
|
void ColumnFinder::CorrectOrientation(TO_BLOCK* block,
|
|
bool vertical_text_lines,
|
|
int recognition_rotation) {
|
|
const FCOORD anticlockwise90(0.0f, 1.0f);
|
|
const FCOORD clockwise90(0.0f, -1.0f);
|
|
const FCOORD rotation180(-1.0f, 0.0f);
|
|
const FCOORD norotation(1.0f, 0.0f);
|
|
|
|
text_rotation_ = norotation;
|
|
// Rotate the page to make the text upright, as implied by
|
|
// recognition_rotation.
|
|
rotation_ = norotation;
|
|
if (recognition_rotation == 1) {
|
|
rotation_ = anticlockwise90;
|
|
} else if (recognition_rotation == 2) {
|
|
rotation_ = rotation180;
|
|
} else if (recognition_rotation == 3) {
|
|
rotation_ = clockwise90;
|
|
}
|
|
// We infer text writing direction to be vertical if there are several
|
|
// vertical text lines detected, and horizontal if not. But if the page
|
|
// orientation was determined to be 90 or 270 degrees, the true writing
|
|
// direction is the opposite of what we inferred.
|
|
if (recognition_rotation & 1) {
|
|
vertical_text_lines = !vertical_text_lines;
|
|
}
|
|
// If we still believe the writing direction is vertical, we use the
|
|
// convention of rotating the page ccw 90 degrees to make the text lines
|
|
// horizontal, and mark the blobs for rotation cw 90 degrees for
|
|
// classification so that the text order is correct after recognition.
|
|
if (vertical_text_lines) {
|
|
rotation_.rotate(anticlockwise90);
|
|
text_rotation_.rotate(clockwise90);
|
|
}
|
|
// Set rerotate_ to the inverse of rotation_.
|
|
rerotate_ = FCOORD(rotation_.x(), -rotation_.y());
|
|
if (rotation_.x() != 1.0f || rotation_.y() != 0.0f) {
|
|
// Rotate all the blobs and tab vectors.
|
|
RotateBlobList(rotation_, &block->large_blobs);
|
|
RotateBlobList(rotation_, &block->blobs);
|
|
RotateBlobList(rotation_, &block->small_blobs);
|
|
RotateBlobList(rotation_, &block->noise_blobs);
|
|
TabFind::ResetForVerticalText(rotation_, rerotate_, &horizontal_lines_,
|
|
&min_gutter_width_);
|
|
part_grid_.Init(gridsize(), bleft(), tright());
|
|
// Reset all blobs to initial state and filter by size.
|
|
// Since they have rotated, the list they belong on could have changed.
|
|
block->ReSetAndReFilterBlobs();
|
|
SetBlockRuleEdges(block);
|
|
stroke_width_->CorrectForRotation(rerotate_, &part_grid_);
|
|
}
|
|
if (textord_debug_tabfind) {
|
|
tprintf("Vertical=%d, orientation=%d, final rotation=(%f, %f)+(%f,%f)\n",
|
|
vertical_text_lines, recognition_rotation,
|
|
rotation_.x(), rotation_.y(),
|
|
text_rotation_.x(), text_rotation_.y());
|
|
}
|
|
// Setup the denormalization.
|
|
ASSERT_HOST(denorm_ == NULL);
|
|
denorm_ = new DENORM;
|
|
denorm_->SetupNormalization(NULL, &rotation_, NULL,
|
|
0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
// Finds blocks of text, image, rule line, table etc, returning them in the
|
|
// blocks and to_blocks
|
|
// (Each TO_BLOCK points to the basic BLOCK and adds more information.)
|
|
// Image blocks are generated by a combination of photo_mask_pix (which may
|
|
// NOT be NULL) and the rejected text found during preliminary textline
|
|
// finding.
|
|
// The input_block is the result of a call to find_components, and contains
|
|
// the blobs found in the image or rectangle to be OCRed. These blobs will be
|
|
// removed and placed in the output blocks, while unused ones will be deleted.
|
|
// If single_column is true, the input is treated as single column, but
|
|
// it is still divided into blocks of equal line spacing/text size.
|
|
// scaled_color is scaled down by scaled_factor from the input color image,
|
|
// and may be NULL if the input was not color.
|
|
// grey_pix is optional, but if present must match the photo_mask_pix in size,
|
|
// and must be a *real* grey image instead of binary_pix * 255.
|
|
// thresholds_pix is expected to be present iff grey_pix is present and
|
|
// can be an integer factor reduction of the grey_pix. It represents the
|
|
// thresholds that were used to create the binary_pix from the grey_pix.
|
|
// If diacritic_blobs is non-null, then diacritics/noise blobs, that would
|
|
// confuse layout anaylsis by causing textline overlap, are placed there,
|
|
// with the expectation that they will be reassigned to words later and
|
|
// noise/diacriticness determined via classification.
|
|
// Returns -1 if the user hits the 'd' key in the blocks window while running
|
|
// in debug mode, which requests a retry with more debug info.
|
|
int ColumnFinder::FindBlocks(PageSegMode pageseg_mode, Pix* scaled_color,
|
|
int scaled_factor, TO_BLOCK* input_block,
|
|
Pix* photo_mask_pix, Pix* thresholds_pix,
|
|
Pix* grey_pix, BLOCK_LIST* blocks,
|
|
BLOBNBOX_LIST* diacritic_blobs,
|
|
TO_BLOCK_LIST* to_blocks) {
|
|
pixOr(photo_mask_pix, photo_mask_pix, nontext_map_);
|
|
stroke_width_->FindLeaderPartitions(input_block, &part_grid_);
|
|
stroke_width_->RemoveLineResidue(&big_parts_);
|
|
FindInitialTabVectors(NULL, min_gutter_width_, tabfind_aligned_gap_fraction_,
|
|
input_block);
|
|
SetBlockRuleEdges(input_block);
|
|
stroke_width_->GradeBlobsIntoPartitions(
|
|
rerotate_, input_block, nontext_map_, denorm_, cjk_script_, &projection_,
|
|
diacritic_blobs, &part_grid_, &big_parts_);
|
|
if (!PSM_SPARSE(pageseg_mode)) {
|
|
ImageFind::FindImagePartitions(photo_mask_pix, rotation_, rerotate_,
|
|
input_block, this, &part_grid_, &big_parts_);
|
|
ImageFind::TransferImagePartsToImageMask(rerotate_, &part_grid_,
|
|
photo_mask_pix);
|
|
ImageFind::FindImagePartitions(photo_mask_pix, rotation_, rerotate_,
|
|
input_block, this, &part_grid_, &big_parts_);
|
|
}
|
|
part_grid_.ReTypeBlobs(&image_bblobs_);
|
|
TidyBlobs(input_block);
|
|
Reset();
|
|
// TODO(rays) need to properly handle big_parts_.
|
|
ColPartition_IT p_it(&big_parts_);
|
|
for (p_it.mark_cycle_pt(); !p_it.cycled_list(); p_it.forward())
|
|
p_it.data()->DisownBoxesNoAssert();
|
|
big_parts_.clear();
|
|
delete stroke_width_;
|
|
stroke_width_ = NULL;
|
|
// Compute the edge offsets whether or not there is a grey_pix. It is done
|
|
// here as the c_blobs haven't been touched by rotation or anything yet,
|
|
// so no denorm is required, yet the text has been separated from image, so
|
|
// no time is wasted running it on image blobs.
|
|
input_block->ComputeEdgeOffsets(thresholds_pix, grey_pix);
|
|
|
|
// A note about handling right-to-left scripts (Hebrew/Arabic):
|
|
// The columns must be reversed and come out in right-to-left instead of
|
|
// the normal left-to-right order. Because the left-to-right ordering
|
|
// is implicit in many data structures, it is simpler to fool the algorithms
|
|
// into thinking they are dealing with left-to-right text.
|
|
// To do this, we reflect the needed data in the y-axis and then reflect
|
|
// the blocks back after they have been created. This is a temporary
|
|
// arrangment that is confined to this function only, so the reflection
|
|
// is completely invisible in the output blocks.
|
|
// The only objects reflected are:
|
|
// The vertical separator lines that have already been found;
|
|
// The bounding boxes of all BLOBNBOXES on all lists on the input_block
|
|
// plus the image_bblobs. The outlines are not touched, since they are
|
|
// not looked at.
|
|
bool input_is_rtl = input_block->block->right_to_left();
|
|
if (input_is_rtl) {
|
|
// Reflect the vertical separator lines (member of TabFind).
|
|
ReflectInYAxis();
|
|
// Reflect the blob boxes.
|
|
ReflectForRtl(input_block, &image_bblobs_);
|
|
part_grid_.ReflectInYAxis();
|
|
}
|
|
|
|
if (!PSM_SPARSE(pageseg_mode)) {
|
|
if (!PSM_COL_FIND_ENABLED(pageseg_mode)) {
|
|
// No tab stops needed. Just the grid that FindTabVectors makes.
|
|
DontFindTabVectors(&image_bblobs_, input_block, &deskew_, &reskew_);
|
|
} else {
|
|
SetBlockRuleEdges(input_block);
|
|
// Find the tab stops, estimate skew, and deskew the tabs, blobs and
|
|
// part_grid_.
|
|
FindTabVectors(&horizontal_lines_, &image_bblobs_, input_block,
|
|
min_gutter_width_, tabfind_aligned_gap_fraction_,
|
|
&part_grid_, &deskew_, &reskew_);
|
|
// Add the deskew to the denorm_.
|
|
DENORM* new_denorm = new DENORM;
|
|
new_denorm->SetupNormalization(NULL, &deskew_, denorm_,
|
|
0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f);
|
|
denorm_ = new_denorm;
|
|
}
|
|
SetBlockRuleEdges(input_block);
|
|
part_grid_.SetTabStops(this);
|
|
|
|
// Make the column_sets_.
|
|
if (!MakeColumns(false)) {
|
|
tprintf("Empty page!!\n");
|
|
part_grid_.DeleteParts();
|
|
return 0; // This is an empty page.
|
|
}
|
|
|
|
// Refill the grid using rectangular spreading, and get the benefit
|
|
// of the completed tab vectors marking the rule edges of each blob.
|
|
Clear();
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (textord_tabfind_show_reject_blobs) {
|
|
ScrollView* rej_win = MakeWindow(500, 300, "Rejected blobs");
|
|
input_block->plot_graded_blobs(rej_win);
|
|
}
|
|
#endif // GRAPHICS_DISABLED
|
|
InsertBlobsToGrid(false, false, &image_bblobs_, this);
|
|
InsertBlobsToGrid(true, true, &input_block->blobs, this);
|
|
|
|
part_grid_.GridFindMargins(best_columns_);
|
|
// Split and merge the partitions by looking at local neighbours.
|
|
GridSplitPartitions();
|
|
// Resolve unknown partitions by adding to an existing partition, fixing
|
|
// the type, or declaring them noise.
|
|
part_grid_.GridFindMargins(best_columns_);
|
|
GridMergePartitions();
|
|
// Insert any unused noise blobs that are close enough to an appropriate
|
|
// partition.
|
|
InsertRemainingNoise(input_block);
|
|
// Add horizontal line separators as partitions.
|
|
GridInsertHLinePartitions();
|
|
GridInsertVLinePartitions();
|
|
// Recompute margins based on a local neighbourhood search.
|
|
part_grid_.GridFindMargins(best_columns_);
|
|
SetPartitionTypes();
|
|
}
|
|
if (textord_tabfind_show_initial_partitions) {
|
|
ScrollView* part_win = MakeWindow(100, 300, "InitialPartitions");
|
|
part_grid_.DisplayBoxes(part_win);
|
|
DisplayTabVectors(part_win);
|
|
}
|
|
|
|
if (!PSM_SPARSE(pageseg_mode)) {
|
|
if (equation_detect_) {
|
|
equation_detect_->FindEquationParts(&part_grid_, best_columns_);
|
|
}
|
|
if (textord_tabfind_find_tables) {
|
|
TableFinder table_finder;
|
|
table_finder.Init(gridsize(), bleft(), tright());
|
|
table_finder.set_resolution(resolution_);
|
|
table_finder.set_left_to_right_language(
|
|
!input_block->block->right_to_left());
|
|
// Copy cleaned partitions from part_grid_ to clean_part_grid_ and
|
|
// insert dot-like noise into period_grid_
|
|
table_finder.InsertCleanPartitions(&part_grid_, input_block);
|
|
// Get Table Regions
|
|
table_finder.LocateTables(&part_grid_, best_columns_, WidthCB(), reskew_);
|
|
}
|
|
GridRemoveUnderlinePartitions();
|
|
part_grid_.DeleteUnknownParts(input_block);
|
|
|
|
// Build the partitions into chains that belong in the same block and
|
|
// refine into one-to-one links, then smooth the types within each chain.
|
|
part_grid_.FindPartitionPartners();
|
|
part_grid_.FindFigureCaptions();
|
|
part_grid_.RefinePartitionPartners(true);
|
|
SmoothPartnerRuns();
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (textord_tabfind_show_partitions) {
|
|
ScrollView* window = MakeWindow(400, 300, "Partitions");
|
|
if (window != NULL) {
|
|
if (textord_debug_images)
|
|
window->Image(AlignedBlob::textord_debug_pix().string(),
|
|
image_origin().x(), image_origin().y());
|
|
part_grid_.DisplayBoxes(window);
|
|
if (!textord_debug_printable)
|
|
DisplayTabVectors(window);
|
|
if (window != NULL && textord_tabfind_show_partitions > 1) {
|
|
delete window->AwaitEvent(SVET_DESTROY);
|
|
}
|
|
}
|
|
}
|
|
#endif // GRAPHICS_DISABLED
|
|
part_grid_.AssertNoDuplicates();
|
|
}
|
|
// Ownership of the ColPartitions moves from part_sets_ to part_grid_ here,
|
|
// and ownership of the BLOBNBOXes moves to the ColPartitions.
|
|
// (They were previously owned by the block or the image_bblobs list.)
|
|
ReleaseBlobsAndCleanupUnused(input_block);
|
|
// Ownership of the ColPartitions moves from part_grid_ to good_parts_ and
|
|
// noise_parts_ here. In text blocks, ownership of the BLOBNBOXes moves
|
|
// from the ColPartitions to the output TO_BLOCK. In non-text, the
|
|
// BLOBNBOXes stay with the ColPartitions and get deleted in the destructor.
|
|
if (PSM_SPARSE(pageseg_mode))
|
|
part_grid_.ExtractPartitionsAsBlocks(blocks, to_blocks);
|
|
else
|
|
TransformToBlocks(blocks, to_blocks);
|
|
if (textord_debug_tabfind) {
|
|
tprintf("Found %d blocks, %d to_blocks\n",
|
|
blocks->length(), to_blocks->length());
|
|
}
|
|
|
|
DisplayBlocks(blocks);
|
|
RotateAndReskewBlocks(input_is_rtl, to_blocks);
|
|
int result = 0;
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (blocks_win_ != NULL) {
|
|
bool waiting = false;
|
|
do {
|
|
waiting = false;
|
|
SVEvent* event = blocks_win_->AwaitEvent(SVET_ANY);
|
|
if (event->type == SVET_INPUT && event->parameter != NULL) {
|
|
if (*event->parameter == 'd')
|
|
result = -1;
|
|
else
|
|
blocks->clear();
|
|
} else if (event->type == SVET_DESTROY) {
|
|
blocks_win_ = NULL;
|
|
} else {
|
|
waiting = true;
|
|
}
|
|
delete event;
|
|
} while (waiting);
|
|
}
|
|
#endif // GRAPHICS_DISABLED
|
|
return result;
|
|
}
|
|
|
|
// Get the rotation required to deskew, and its inverse rotation.
|
|
void ColumnFinder::GetDeskewVectors(FCOORD* deskew, FCOORD* reskew) {
|
|
*reskew = reskew_;
|
|
*deskew = reskew_;
|
|
deskew->set_y(-deskew->y());
|
|
}
|
|
|
|
void ColumnFinder::SetEquationDetect(EquationDetectBase* detect) {
|
|
equation_detect_ = detect;
|
|
}
|
|
|
|
//////////////// PRIVATE CODE /////////////////////////
|
|
|
|
// Displays the blob and block bounding boxes in a window called Blocks.
|
|
void ColumnFinder::DisplayBlocks(BLOCK_LIST* blocks) {
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (textord_tabfind_show_blocks) {
|
|
if (blocks_win_ == NULL)
|
|
blocks_win_ = MakeWindow(700, 300, "Blocks");
|
|
else
|
|
blocks_win_->Clear();
|
|
if (textord_debug_images)
|
|
blocks_win_->Image(AlignedBlob::textord_debug_pix().string(),
|
|
image_origin().x(), image_origin().y());
|
|
else
|
|
DisplayBoxes(blocks_win_);
|
|
BLOCK_IT block_it(blocks);
|
|
int serial = 1;
|
|
for (block_it.mark_cycle_pt(); !block_it.cycled_list();
|
|
block_it.forward()) {
|
|
BLOCK* block = block_it.data();
|
|
block->plot(blocks_win_, serial++,
|
|
textord_debug_printable ? ScrollView::BLUE
|
|
: ScrollView::GREEN);
|
|
}
|
|
blocks_win_->Update();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Displays the column edges at each grid y coordinate defined by
|
|
// best_columns_.
|
|
void ColumnFinder::DisplayColumnBounds(PartSetVector* sets) {
|
|
#ifndef GRAPHICS_DISABLED
|
|
ScrollView* col_win = MakeWindow(50, 300, "Columns");
|
|
if (textord_debug_images)
|
|
col_win->Image(AlignedBlob::textord_debug_pix().string(),
|
|
image_origin().x(), image_origin().y());
|
|
else
|
|
DisplayBoxes(col_win);
|
|
col_win->Pen(textord_debug_printable ? ScrollView::BLUE : ScrollView::GREEN);
|
|
for (int i = 0; i < gridheight_; ++i) {
|
|
ColPartitionSet* columns = best_columns_[i];
|
|
if (columns != NULL)
|
|
columns->DisplayColumnEdges(i * gridsize_, (i + 1) * gridsize_, col_win);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Sets up column_sets_ (the determined column layout at each horizontal
|
|
// slice). Returns false if the page is empty.
|
|
bool ColumnFinder::MakeColumns(bool single_column) {
|
|
// The part_sets_ are a temporary structure used during column creation,
|
|
// and is a vector of ColPartitionSets, representing ColPartitions found
|
|
// at horizontal slices through the page.
|
|
PartSetVector part_sets;
|
|
if (!single_column) {
|
|
if (!part_grid_.MakeColPartSets(&part_sets))
|
|
return false; // Empty page.
|
|
ASSERT_HOST(part_grid_.gridheight() == gridheight_);
|
|
// Try using only the good parts first.
|
|
bool good_only = true;
|
|
do {
|
|
for (int i = 0; i < gridheight_; ++i) {
|
|
ColPartitionSet* line_set = part_sets.get(i);
|
|
if (line_set != NULL && line_set->LegalColumnCandidate()) {
|
|
ColPartitionSet* column_candidate = line_set->Copy(good_only);
|
|
if (column_candidate != NULL)
|
|
column_candidate->AddToColumnSetsIfUnique(&column_sets_, WidthCB());
|
|
}
|
|
}
|
|
good_only = !good_only;
|
|
} while (column_sets_.empty() && !good_only);
|
|
if (textord_debug_tabfind)
|
|
PrintColumnCandidates("Column candidates");
|
|
// Improve the column candidates against themselves.
|
|
ImproveColumnCandidates(&column_sets_, &column_sets_);
|
|
if (textord_debug_tabfind)
|
|
PrintColumnCandidates("Improved columns");
|
|
// Improve the column candidates using the part_sets_.
|
|
ImproveColumnCandidates(&part_sets, &column_sets_);
|
|
}
|
|
ColPartitionSet* single_column_set =
|
|
part_grid_.MakeSingleColumnSet(WidthCB());
|
|
if (single_column_set != NULL) {
|
|
// Always add the single column set as a backup even if not in
|
|
// single column mode.
|
|
single_column_set->AddToColumnSetsIfUnique(&column_sets_, WidthCB());
|
|
}
|
|
if (textord_debug_tabfind)
|
|
PrintColumnCandidates("Final Columns");
|
|
bool has_columns = !column_sets_.empty();
|
|
if (has_columns) {
|
|
// Divide the page into sections of uniform column layout.
|
|
bool any_multi_column = AssignColumns(part_sets);
|
|
if (textord_tabfind_show_columns) {
|
|
DisplayColumnBounds(&part_sets);
|
|
}
|
|
ComputeMeanColumnGap(any_multi_column);
|
|
}
|
|
for (int i = 0; i < part_sets.size(); ++i) {
|
|
ColPartitionSet* line_set = part_sets.get(i);
|
|
if (line_set != NULL) {
|
|
line_set->RelinquishParts();
|
|
delete line_set;
|
|
}
|
|
}
|
|
return has_columns;
|
|
}
|
|
|
|
// Attempt to improve the column_candidates by expanding the columns
|
|
// and adding new partitions from the partition sets in src_sets.
|
|
// Src_sets may be equal to column_candidates, in which case it will
|
|
// use them as a source to improve themselves.
|
|
void ColumnFinder::ImproveColumnCandidates(PartSetVector* src_sets,
|
|
PartSetVector* column_sets) {
|
|
PartSetVector temp_cols;
|
|
temp_cols.move(column_sets);
|
|
if (src_sets == column_sets)
|
|
src_sets = &temp_cols;
|
|
int set_size = temp_cols.size();
|
|
// Try using only the good parts first.
|
|
bool good_only = true;
|
|
do {
|
|
for (int i = 0; i < set_size; ++i) {
|
|
ColPartitionSet* column_candidate = temp_cols.get(i);
|
|
ASSERT_HOST(column_candidate != NULL);
|
|
ColPartitionSet* improved = column_candidate->Copy(good_only);
|
|
if (improved != NULL) {
|
|
improved->ImproveColumnCandidate(WidthCB(), src_sets);
|
|
improved->AddToColumnSetsIfUnique(column_sets, WidthCB());
|
|
}
|
|
}
|
|
good_only = !good_only;
|
|
} while (column_sets->empty() && !good_only);
|
|
if (column_sets->empty())
|
|
column_sets->move(&temp_cols);
|
|
else
|
|
temp_cols.delete_data_pointers();
|
|
}
|
|
|
|
// Prints debug information on the column candidates.
|
|
void ColumnFinder::PrintColumnCandidates(const char* title) {
|
|
int set_size = column_sets_.size();
|
|
tprintf("Found %d %s:\n", set_size, title);
|
|
if (textord_debug_tabfind >= 3) {
|
|
for (int i = 0; i < set_size; ++i) {
|
|
ColPartitionSet* column_set = column_sets_.get(i);
|
|
column_set->Print();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finds the optimal set of columns that cover the entire image with as
|
|
// few changes in column partition as possible.
|
|
// NOTE: this could be thought of as an optimization problem, but a simple
|
|
// greedy algorithm is used instead. The algorithm repeatedly finds the modal
|
|
// compatible column in an unassigned region and uses that with the extra
|
|
// tweak of extending the modal region over small breaks in compatibility.
|
|
// Where modal regions overlap, the boundary is chosen so as to minimize
|
|
// the cost in terms of ColPartitions not fitting an approved column.
|
|
// Returns true if any part of the page is multi-column.
|
|
bool ColumnFinder::AssignColumns(const PartSetVector& part_sets) {
|
|
int set_count = part_sets.size();
|
|
ASSERT_HOST(set_count == gridheight());
|
|
// Allocate and init the best_columns_.
|
|
best_columns_ = new ColPartitionSet*[set_count];
|
|
for (int y = 0; y < set_count; ++y)
|
|
best_columns_[y] = NULL;
|
|
int column_count = column_sets_.size();
|
|
// column_set_costs[part_sets_ index][column_sets_ index] is
|
|
// < MAX_INT32 if the partition set is compatible with the column set,
|
|
// in which case its value is the cost for that set used in deciding
|
|
// which competing set to assign.
|
|
// any_columns_possible[part_sets_ index] is true if any of
|
|
// possible_column_sets[part_sets_ index][*] is < MAX_INT32.
|
|
// assigned_costs[part_sets_ index] is set to the column_set_costs
|
|
// of the assigned column_sets_ index or MAX_INT32 if none is set.
|
|
// On return the best_columns_ member is set.
|
|
bool* any_columns_possible = new bool[set_count];
|
|
int* assigned_costs = new int[set_count];
|
|
int** column_set_costs = new int*[set_count];
|
|
// Set possible column_sets to indicate whether each set is compatible
|
|
// with each column.
|
|
for (int part_i = 0; part_i < set_count; ++part_i) {
|
|
ColPartitionSet* line_set = part_sets.get(part_i);
|
|
bool debug = line_set != NULL &&
|
|
WithinTestRegion(2, line_set->bounding_box().left(),
|
|
line_set->bounding_box().bottom());
|
|
column_set_costs[part_i] = new int[column_count];
|
|
any_columns_possible[part_i] = false;
|
|
assigned_costs[part_i] = MAX_INT32;
|
|
for (int col_i = 0; col_i < column_count; ++col_i) {
|
|
if (line_set != NULL &&
|
|
column_sets_.get(col_i)->CompatibleColumns(debug, line_set,
|
|
WidthCB())) {
|
|
column_set_costs[part_i][col_i] =
|
|
column_sets_.get(col_i)->UnmatchedWidth(line_set);
|
|
any_columns_possible[part_i] = true;
|
|
} else {
|
|
column_set_costs[part_i][col_i] = MAX_INT32;
|
|
if (debug)
|
|
tprintf("Set id %d did not match at y=%d, lineset =%p\n",
|
|
col_i, part_i, line_set);
|
|
}
|
|
}
|
|
}
|
|
bool any_multi_column = false;
|
|
// Assign a column set to each vertical grid position.
|
|
// While there is an unassigned range, find its mode.
|
|
int start, end;
|
|
while (BiggestUnassignedRange(set_count, any_columns_possible,
|
|
&start, &end)) {
|
|
if (textord_debug_tabfind >= 2)
|
|
tprintf("Biggest unassigned range = %d- %d\n", start, end);
|
|
// Find the modal column_set_id in the range.
|
|
int column_set_id = RangeModalColumnSet(column_set_costs,
|
|
assigned_costs, start, end);
|
|
if (textord_debug_tabfind >= 2) {
|
|
tprintf("Range modal column id = %d\n", column_set_id);
|
|
column_sets_.get(column_set_id)->Print();
|
|
}
|
|
// Now find the longest run of the column_set_id in the range.
|
|
ShrinkRangeToLongestRun(column_set_costs, assigned_costs,
|
|
any_columns_possible,
|
|
column_set_id, &start, &end);
|
|
if (textord_debug_tabfind >= 2)
|
|
tprintf("Shrunk range = %d- %d\n", start, end);
|
|
// Extend the start and end past the longest run, while there are
|
|
// only small gaps in compatibility that can be overcome by larger
|
|
// regions of compatibility beyond.
|
|
ExtendRangePastSmallGaps(column_set_costs, assigned_costs,
|
|
any_columns_possible,
|
|
column_set_id, -1, -1, &start);
|
|
--end;
|
|
ExtendRangePastSmallGaps(column_set_costs, assigned_costs,
|
|
any_columns_possible,
|
|
column_set_id, 1, set_count, &end);
|
|
++end;
|
|
if (textord_debug_tabfind)
|
|
tprintf("Column id %d applies to range = %d - %d\n",
|
|
column_set_id, start, end);
|
|
// Assign the column to the range, which now may overlap with other ranges.
|
|
AssignColumnToRange(column_set_id, start, end, column_set_costs,
|
|
assigned_costs);
|
|
if (column_sets_.get(column_set_id)->GoodColumnCount() > 1)
|
|
any_multi_column = true;
|
|
}
|
|
// If anything remains unassigned, the whole lot is unassigned, so
|
|
// arbitrarily assign id 0.
|
|
if (best_columns_[0] == NULL) {
|
|
AssignColumnToRange(0, 0, gridheight_, column_set_costs, assigned_costs);
|
|
}
|
|
// Free memory.
|
|
for (int i = 0; i < set_count; ++i) {
|
|
delete [] column_set_costs[i];
|
|
}
|
|
delete [] assigned_costs;
|
|
delete [] any_columns_possible;
|
|
delete [] column_set_costs;
|
|
return any_multi_column;
|
|
}
|
|
|
|
// Finds the biggest range in part_sets_ that has no assigned column, but
|
|
// column assignment is possible.
|
|
bool ColumnFinder::BiggestUnassignedRange(int set_count,
|
|
const bool* any_columns_possible,
|
|
int* best_start, int* best_end) {
|
|
int best_range_size = 0;
|
|
*best_start = set_count;
|
|
*best_end = set_count;
|
|
int end = set_count;
|
|
for (int start = 0; start < gridheight_; start = end) {
|
|
// Find the first unassigned index in start.
|
|
while (start < set_count) {
|
|
if (best_columns_[start] == NULL && any_columns_possible[start])
|
|
break;
|
|
++start;
|
|
}
|
|
// Find the first past the end and count the good ones in between.
|
|
int range_size = 1; // Number of non-null, but unassigned line sets.
|
|
end = start + 1;
|
|
while (end < set_count) {
|
|
if (best_columns_[end] != NULL)
|
|
break;
|
|
if (any_columns_possible[end])
|
|
++range_size;
|
|
++end;
|
|
}
|
|
if (start < set_count && range_size > best_range_size) {
|
|
best_range_size = range_size;
|
|
*best_start = start;
|
|
*best_end = end;
|
|
}
|
|
}
|
|
return *best_start < *best_end;
|
|
}
|
|
|
|
// Finds the modal compatible column_set_ index within the given range.
|
|
int ColumnFinder::RangeModalColumnSet(int** column_set_costs,
|
|
const int* assigned_costs,
|
|
int start, int end) {
|
|
int column_count = column_sets_.size();
|
|
STATS column_stats(0, column_count);
|
|
for (int part_i = start; part_i < end; ++part_i) {
|
|
for (int col_j = 0; col_j < column_count; ++col_j) {
|
|
if (column_set_costs[part_i][col_j] < assigned_costs[part_i])
|
|
column_stats.add(col_j, 1);
|
|
}
|
|
}
|
|
ASSERT_HOST(column_stats.get_total() > 0);
|
|
return column_stats.mode();
|
|
}
|
|
|
|
// Given that there are many column_set_id compatible columns in the range,
|
|
// shrinks the range to the longest contiguous run of compatibility, allowing
|
|
// gaps where no columns are possible, but not where competing columns are
|
|
// possible.
|
|
void ColumnFinder::ShrinkRangeToLongestRun(int** column_set_costs,
|
|
const int* assigned_costs,
|
|
const bool* any_columns_possible,
|
|
int column_set_id,
|
|
int* best_start, int* best_end) {
|
|
// orig_start and orig_end are the maximum range we will look at.
|
|
int orig_start = *best_start;
|
|
int orig_end = *best_end;
|
|
int best_range_size = 0;
|
|
*best_start = orig_end;
|
|
*best_end = orig_end;
|
|
int end = orig_end;
|
|
for (int start = orig_start; start < orig_end; start = end) {
|
|
// Find the first possible
|
|
while (start < orig_end) {
|
|
if (column_set_costs[start][column_set_id] < assigned_costs[start] ||
|
|
!any_columns_possible[start])
|
|
break;
|
|
++start;
|
|
}
|
|
// Find the first past the end.
|
|
end = start + 1;
|
|
while (end < orig_end) {
|
|
if (column_set_costs[end][column_set_id] >= assigned_costs[start] &&
|
|
any_columns_possible[end])
|
|
break;
|
|
++end;
|
|
}
|
|
if (start < orig_end && end - start > best_range_size) {
|
|
best_range_size = end - start;
|
|
*best_start = start;
|
|
*best_end = end;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Moves start in the direction of step, upto, but not including end while
|
|
// the only incompatible regions are no more than kMaxIncompatibleColumnCount
|
|
// in size, and the compatible regions beyond are bigger.
|
|
void ColumnFinder::ExtendRangePastSmallGaps(int** column_set_costs,
|
|
const int* assigned_costs,
|
|
const bool* any_columns_possible,
|
|
int column_set_id,
|
|
int step, int end, int* start) {
|
|
if (textord_debug_tabfind > 2)
|
|
tprintf("Starting expansion at %d, step=%d, limit=%d\n",
|
|
*start, step, end);
|
|
if (*start == end)
|
|
return; // Cannot be expanded.
|
|
|
|
int barrier_size = 0;
|
|
int good_size = 0;
|
|
do {
|
|
// Find the size of the incompatible barrier.
|
|
barrier_size = 0;
|
|
int i;
|
|
for (i = *start + step; i != end; i += step) {
|
|
if (column_set_costs[i][column_set_id] < assigned_costs[i])
|
|
break; // We are back on.
|
|
// Locations where none are possible don't count.
|
|
if (any_columns_possible[i])
|
|
++barrier_size;
|
|
}
|
|
if (textord_debug_tabfind > 2)
|
|
tprintf("At %d, Barrier size=%d\n", i, barrier_size);
|
|
if (barrier_size > kMaxIncompatibleColumnCount)
|
|
return; // Barrier too big.
|
|
if (i == end) {
|
|
// We can't go any further, but the barrier was small, so go to the end.
|
|
*start = i - step;
|
|
return;
|
|
}
|
|
// Now find the size of the good region on the other side.
|
|
good_size = 1;
|
|
for (i += step; i != end; i += step) {
|
|
if (column_set_costs[i][column_set_id] < assigned_costs[i])
|
|
++good_size;
|
|
else if (any_columns_possible[i])
|
|
break;
|
|
}
|
|
if (textord_debug_tabfind > 2)
|
|
tprintf("At %d, good size = %d\n", i, good_size);
|
|
// If we had enough good ones we can extend the start and keep looking.
|
|
if (good_size >= barrier_size)
|
|
*start = i - step;
|
|
} while (good_size >= barrier_size);
|
|
}
|
|
|
|
// Assigns the given column_set_id to the given range.
|
|
void ColumnFinder::AssignColumnToRange(int column_set_id, int start, int end,
|
|
int** column_set_costs,
|
|
int* assigned_costs) {
|
|
ColPartitionSet* column_set = column_sets_.get(column_set_id);
|
|
for (int i = start; i < end; ++i) {
|
|
assigned_costs[i] = column_set_costs[i][column_set_id];
|
|
best_columns_[i] = column_set;
|
|
}
|
|
}
|
|
|
|
// Computes the mean_column_gap_.
|
|
void ColumnFinder::ComputeMeanColumnGap(bool any_multi_column) {
|
|
int total_gap = 0;
|
|
int total_width = 0;
|
|
int gap_samples = 0;
|
|
int width_samples = 0;
|
|
for (int i = 0; i < gridheight_; ++i) {
|
|
ASSERT_HOST(best_columns_[i] != NULL);
|
|
best_columns_[i]->AccumulateColumnWidthsAndGaps(&total_width,
|
|
&width_samples,
|
|
&total_gap,
|
|
&gap_samples);
|
|
}
|
|
mean_column_gap_ = any_multi_column && gap_samples > 0
|
|
? total_gap / gap_samples : total_width / width_samples;
|
|
}
|
|
|
|
//////// Functions that manipulate ColPartitions in the part_grid_ /////
|
|
//////// to split, merge, find margins, and find types. //////////////
|
|
|
|
// Helper to delete all the deletable blobs on the list. Owned blobs are
|
|
// extracted from the list, but not deleted, leaving them owned by the owner().
|
|
static void ReleaseAllBlobsAndDeleteUnused(BLOBNBOX_LIST* blobs) {
|
|
for (BLOBNBOX_IT blob_it(blobs); !blob_it.empty(); blob_it.forward()) {
|
|
BLOBNBOX* blob = blob_it.extract();
|
|
if (blob->owner() == NULL) {
|
|
delete blob->cblob();
|
|
delete blob;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Hoovers up all un-owned blobs and deletes them.
|
|
// The rest get released from the block so the ColPartitions can pass
|
|
// ownership to the output blocks.
|
|
void ColumnFinder::ReleaseBlobsAndCleanupUnused(TO_BLOCK* block) {
|
|
ReleaseAllBlobsAndDeleteUnused(&block->blobs);
|
|
ReleaseAllBlobsAndDeleteUnused(&block->small_blobs);
|
|
ReleaseAllBlobsAndDeleteUnused(&block->noise_blobs);
|
|
ReleaseAllBlobsAndDeleteUnused(&block->large_blobs);
|
|
ReleaseAllBlobsAndDeleteUnused(&image_bblobs_);
|
|
}
|
|
|
|
// Splits partitions that cross columns where they have nothing in the gap.
|
|
void ColumnFinder::GridSplitPartitions() {
|
|
// Iterate the ColPartitions in the grid.
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
gsearch(&part_grid_);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* dont_repeat = NULL;
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (part->blob_type() < BRT_UNKNOWN || part == dont_repeat)
|
|
continue; // Only applies to text partitions.
|
|
ColPartitionSet* column_set = best_columns_[gsearch.GridY()];
|
|
int first_col = -1;
|
|
int last_col = -1;
|
|
// Find which columns the partition spans.
|
|
part->ColumnRange(resolution_, column_set, &first_col, &last_col);
|
|
if (first_col > 0)
|
|
--first_col;
|
|
// Convert output column indices to physical column indices.
|
|
first_col /= 2;
|
|
last_col /= 2;
|
|
// We will only consider cases where a partition spans two columns,
|
|
// since a heading that spans more columns than that is most likely
|
|
// genuine.
|
|
if (last_col != first_col + 1)
|
|
continue;
|
|
// Set up a rectangle search x-bounded by the column gap and y by the part.
|
|
int y = part->MidY();
|
|
TBOX margin_box = part->bounding_box();
|
|
bool debug = AlignedBlob::WithinTestRegion(2, margin_box.left(),
|
|
margin_box.bottom());
|
|
if (debug) {
|
|
tprintf("Considering partition for GridSplit:");
|
|
part->Print();
|
|
}
|
|
ColPartition* column = column_set->GetColumnByIndex(first_col);
|
|
if (column == NULL)
|
|
continue;
|
|
margin_box.set_left(column->RightAtY(y) + 2);
|
|
column = column_set->GetColumnByIndex(last_col);
|
|
if (column == NULL)
|
|
continue;
|
|
margin_box.set_right(column->LeftAtY(y) - 2);
|
|
// TODO(rays) Decide whether to keep rectangular filling or not in the
|
|
// main grid and therefore whether we need a fancier search here.
|
|
// Now run the rect search on the main blob grid.
|
|
GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> rectsearch(this);
|
|
if (debug) {
|
|
tprintf("Searching box (%d,%d)->(%d,%d)\n",
|
|
margin_box.left(), margin_box.bottom(),
|
|
margin_box.right(), margin_box.top());
|
|
part->Print();
|
|
}
|
|
rectsearch.StartRectSearch(margin_box);
|
|
BLOBNBOX* bbox;
|
|
while ((bbox = rectsearch.NextRectSearch()) != NULL) {
|
|
if (bbox->bounding_box().overlap(margin_box))
|
|
break;
|
|
}
|
|
if (bbox == NULL) {
|
|
// There seems to be nothing in the hole, so split the partition.
|
|
gsearch.RemoveBBox();
|
|
int x_middle = (margin_box.left() + margin_box.right()) / 2;
|
|
if (debug) {
|
|
tprintf("Splitting part at %d:", x_middle);
|
|
part->Print();
|
|
}
|
|
ColPartition* split_part = part->SplitAt(x_middle);
|
|
if (split_part != NULL) {
|
|
if (debug) {
|
|
tprintf("Split result:");
|
|
part->Print();
|
|
split_part->Print();
|
|
}
|
|
part_grid_.InsertBBox(true, true, split_part);
|
|
} else {
|
|
// Split had no effect
|
|
if (debug)
|
|
tprintf("Split had no effect\n");
|
|
dont_repeat = part;
|
|
}
|
|
part_grid_.InsertBBox(true, true, part);
|
|
gsearch.RepositionIterator();
|
|
} else if (debug) {
|
|
tprintf("Part cannot be split: blob (%d,%d)->(%d,%d) in column gap\n",
|
|
bbox->bounding_box().left(), bbox->bounding_box().bottom(),
|
|
bbox->bounding_box().right(), bbox->bounding_box().top());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merges partitions where there is vertical overlap, within a single column,
|
|
// and the horizontal gap is small enough.
|
|
void ColumnFinder::GridMergePartitions() {
|
|
// Iterate the ColPartitions in the grid.
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
gsearch(&part_grid_);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
if (part->IsUnMergeableType())
|
|
continue;
|
|
// Set up a rectangle search x-bounded by the column and y by the part.
|
|
ColPartitionSet* columns = best_columns_[gsearch.GridY()];
|
|
TBOX box = part->bounding_box();
|
|
bool debug = AlignedBlob::WithinTestRegion(1, box.left(), box.bottom());
|
|
if (debug) {
|
|
tprintf("Considering part for merge at:");
|
|
part->Print();
|
|
}
|
|
int y = part->MidY();
|
|
ColPartition* left_column = columns->ColumnContaining(box.left(), y);
|
|
ColPartition* right_column = columns->ColumnContaining(box.right(), y);
|
|
if (left_column == NULL || right_column != left_column) {
|
|
if (debug)
|
|
tprintf("In different columns\n");
|
|
continue;
|
|
}
|
|
box.set_left(left_column->LeftAtY(y));
|
|
box.set_right(right_column->RightAtY(y));
|
|
// Now run the rect search.
|
|
bool modified_box = false;
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
rsearch(&part_grid_);
|
|
rsearch.SetUniqueMode(true);
|
|
rsearch.StartRectSearch(box);
|
|
ColPartition* neighbour;
|
|
|
|
while ((neighbour = rsearch.NextRectSearch()) != NULL) {
|
|
if (neighbour == part || neighbour->IsUnMergeableType())
|
|
continue;
|
|
const TBOX& neighbour_box = neighbour->bounding_box();
|
|
if (debug) {
|
|
tprintf("Considering merge with neighbour at:");
|
|
neighbour->Print();
|
|
}
|
|
if (neighbour_box.right() < box.left() ||
|
|
neighbour_box.left() > box.right())
|
|
continue; // Not within the same column.
|
|
if (part->VSignificantCoreOverlap(*neighbour) &&
|
|
part->TypesMatch(*neighbour)) {
|
|
// There is vertical overlap and the gross types match, but only
|
|
// merge if the horizontal gap is small enough, as one of the
|
|
// partitions may be a figure caption within a column.
|
|
// If there is only one column, then the mean_column_gap_ is large
|
|
// enough to allow almost any merge, by being the mean column width.
|
|
const TBOX& part_box = part->bounding_box();
|
|
// Don't merge if there is something else in the way. Use the margin
|
|
// to decide, and check both to allow a bit of overlap.
|
|
if (neighbour_box.left() > part->right_margin() &&
|
|
part_box.right() < neighbour->left_margin())
|
|
continue; // Neighbour is too far to the right.
|
|
if (neighbour_box.right() < part->left_margin() &&
|
|
part_box.left() > neighbour->right_margin())
|
|
continue; // Neighbour is too far to the left.
|
|
int h_gap = MAX(part_box.left(), neighbour_box.left()) -
|
|
MIN(part_box.right(), neighbour_box.right());
|
|
if (h_gap < mean_column_gap_ * kHorizontalGapMergeFraction ||
|
|
part_box.width() < mean_column_gap_ ||
|
|
neighbour_box.width() < mean_column_gap_) {
|
|
if (debug) {
|
|
tprintf("Running grid-based merge between:\n");
|
|
part->Print();
|
|
neighbour->Print();
|
|
}
|
|
rsearch.RemoveBBox();
|
|
if (!modified_box) {
|
|
// We are going to modify part, so remove it and re-insert it after.
|
|
gsearch.RemoveBBox();
|
|
rsearch.RepositionIterator();
|
|
modified_box = true;
|
|
}
|
|
part->Absorb(neighbour, WidthCB());
|
|
} else if (debug) {
|
|
tprintf("Neighbour failed hgap test\n");
|
|
}
|
|
} else if (debug) {
|
|
tprintf("Neighbour failed overlap or typesmatch test\n");
|
|
}
|
|
}
|
|
if (modified_box) {
|
|
// We modified the box of part, so re-insert it into the grid.
|
|
// This does no harm in the current cell, as it already exists there,
|
|
// but it needs to exist in all the cells covered by its bounding box,
|
|
// or it will never be found by a full search.
|
|
// Because the box has changed, it has to be removed first, otherwise
|
|
// add_sorted may fail to keep a single copy of the pointer.
|
|
part_grid_.InsertBBox(true, true, part);
|
|
gsearch.RepositionIterator();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Inserts remaining noise blobs into the most applicable partition if any.
|
|
// If there is no applicable partition, then the blobs are deleted.
|
|
void ColumnFinder::InsertRemainingNoise(TO_BLOCK* block) {
|
|
BLOBNBOX_IT blob_it(&block->noise_blobs);
|
|
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
|
|
BLOBNBOX* blob = blob_it.data();
|
|
if (blob->owner() != NULL) continue;
|
|
TBOX search_box(blob->bounding_box());
|
|
bool debug = WithinTestRegion(2, search_box.left(), search_box.bottom());
|
|
search_box.pad(gridsize(), gridsize());
|
|
// Setup a rectangle search to find the best partition to merge with.
|
|
ColPartitionGridSearch rsearch(&part_grid_);
|
|
rsearch.SetUniqueMode(true);
|
|
rsearch.StartRectSearch(search_box);
|
|
ColPartition* part;
|
|
ColPartition* best_part = NULL;
|
|
int best_distance = 0;
|
|
while ((part = rsearch.NextRectSearch()) != NULL) {
|
|
if (part->IsUnMergeableType())
|
|
continue;
|
|
int distance = projection_.DistanceOfBoxFromPartition(
|
|
blob->bounding_box(), *part, denorm_, debug);
|
|
if (best_part == NULL || distance < best_distance) {
|
|
best_part = part;
|
|
best_distance = distance;
|
|
}
|
|
}
|
|
if (best_part != NULL &&
|
|
best_distance < kMaxDistToPartSizeRatio * best_part->median_size()) {
|
|
// Close enough to merge.
|
|
if (debug) {
|
|
tprintf("Adding noise blob with distance %d, thr=%g:box:",
|
|
best_distance,
|
|
kMaxDistToPartSizeRatio * best_part->median_size());
|
|
blob->bounding_box().print();
|
|
tprintf("To partition:");
|
|
best_part->Print();
|
|
}
|
|
part_grid_.RemoveBBox(best_part);
|
|
best_part->AddBox(blob);
|
|
part_grid_.InsertBBox(true, true, best_part);
|
|
blob->set_owner(best_part);
|
|
blob->set_flow(best_part->flow());
|
|
blob->set_region_type(best_part->blob_type());
|
|
} else {
|
|
// Mark the blob for deletion.
|
|
blob->set_region_type(BRT_NOISE);
|
|
}
|
|
}
|
|
// Delete the marked blobs, clearing neighbour references.
|
|
block->DeleteUnownedNoise();
|
|
}
|
|
|
|
// Helper makes a box from a horizontal line.
|
|
static TBOX BoxFromHLine(const TabVector* hline) {
|
|
int top = MAX(hline->startpt().y(), hline->endpt().y());
|
|
int bottom = MIN(hline->startpt().y(), hline->endpt().y());
|
|
top += hline->mean_width();
|
|
if (top == bottom) {
|
|
if (bottom > 0)
|
|
--bottom;
|
|
else
|
|
++top;
|
|
}
|
|
return TBOX(hline->startpt().x(), bottom, hline->endpt().x(), top);
|
|
}
|
|
|
|
// Remove partitions that come from horizontal lines that look like
|
|
// underlines, but are not part of a table.
|
|
void ColumnFinder::GridRemoveUnderlinePartitions() {
|
|
TabVector_IT hline_it(&horizontal_lines_);
|
|
for (hline_it.mark_cycle_pt(); !hline_it.cycled_list(); hline_it.forward()) {
|
|
TabVector* hline = hline_it.data();
|
|
if (hline->intersects_other_lines())
|
|
continue;
|
|
TBOX line_box = BoxFromHLine(hline);
|
|
TBOX search_box = line_box;
|
|
search_box.pad(0, line_box.height());
|
|
ColPartitionGridSearch part_search(&part_grid_);
|
|
part_search.SetUniqueMode(true);
|
|
part_search.StartRectSearch(search_box);
|
|
ColPartition* covered;
|
|
bool touched_table = false;
|
|
bool touched_text = false;
|
|
ColPartition* line_part = NULL;
|
|
while ((covered = part_search.NextRectSearch()) != NULL) {
|
|
if (covered->type() == PT_TABLE) {
|
|
touched_table = true;
|
|
break;
|
|
} else if (covered->IsTextType()) {
|
|
// TODO(rays) Add a list of underline sections to ColPartition.
|
|
int text_bottom = covered->median_bottom();
|
|
if (line_box.bottom() <= text_bottom && text_bottom <= search_box.top())
|
|
touched_text = true;
|
|
} else if (covered->blob_type() == BRT_HLINE &&
|
|
line_box.contains(covered->bounding_box())) {
|
|
line_part = covered;
|
|
}
|
|
}
|
|
if (line_part != NULL && !touched_table && touched_text) {
|
|
part_grid_.RemoveBBox(line_part);
|
|
delete line_part;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add horizontal line separators as partitions.
|
|
void ColumnFinder::GridInsertHLinePartitions() {
|
|
TabVector_IT hline_it(&horizontal_lines_);
|
|
for (hline_it.mark_cycle_pt(); !hline_it.cycled_list(); hline_it.forward()) {
|
|
TabVector* hline = hline_it.data();
|
|
TBOX line_box = BoxFromHLine(hline);
|
|
ColPartition* part = ColPartition::MakeLinePartition(
|
|
BRT_HLINE, vertical_skew_,
|
|
line_box.left(), line_box.bottom(), line_box.right(), line_box.top());
|
|
part->set_type(PT_HORZ_LINE);
|
|
bool any_image = false;
|
|
ColPartitionGridSearch part_search(&part_grid_);
|
|
part_search.SetUniqueMode(true);
|
|
part_search.StartRectSearch(line_box);
|
|
ColPartition* covered;
|
|
while ((covered = part_search.NextRectSearch()) != NULL) {
|
|
if (covered->IsImageType()) {
|
|
any_image = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!any_image)
|
|
part_grid_.InsertBBox(true, true, part);
|
|
else
|
|
delete part;
|
|
}
|
|
}
|
|
|
|
// Add horizontal line separators as partitions.
|
|
void ColumnFinder::GridInsertVLinePartitions() {
|
|
TabVector_IT vline_it(dead_vectors());
|
|
for (vline_it.mark_cycle_pt(); !vline_it.cycled_list(); vline_it.forward()) {
|
|
TabVector* vline = vline_it.data();
|
|
if (!vline->IsSeparator())
|
|
continue;
|
|
int left = MIN(vline->startpt().x(), vline->endpt().x());
|
|
int right = MAX(vline->startpt().x(), vline->endpt().x());
|
|
right += vline->mean_width();
|
|
if (left == right) {
|
|
if (left > 0)
|
|
--left;
|
|
else
|
|
++right;
|
|
}
|
|
ColPartition* part = ColPartition::MakeLinePartition(
|
|
BRT_VLINE, vertical_skew_,
|
|
left, vline->startpt().y(), right, vline->endpt().y());
|
|
part->set_type(PT_VERT_LINE);
|
|
bool any_image = false;
|
|
ColPartitionGridSearch part_search(&part_grid_);
|
|
part_search.SetUniqueMode(true);
|
|
part_search.StartRectSearch(part->bounding_box());
|
|
ColPartition* covered;
|
|
while ((covered = part_search.NextRectSearch()) != NULL) {
|
|
if (covered->IsImageType()) {
|
|
any_image = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!any_image)
|
|
part_grid_.InsertBBox(true, true, part);
|
|
else
|
|
delete part;
|
|
}
|
|
}
|
|
|
|
// For every ColPartition in the grid, sets its type based on position
|
|
// in the columns.
|
|
void ColumnFinder::SetPartitionTypes() {
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
gsearch(&part_grid_);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
part->SetPartitionType(resolution_, best_columns_[gsearch.GridY()]);
|
|
}
|
|
}
|
|
|
|
// Only images remain with multiple types in a run of partners.
|
|
// Sets the type of all in the group to the maximum of the group.
|
|
void ColumnFinder::SmoothPartnerRuns() {
|
|
// Iterate the ColPartitions in the grid.
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
gsearch(&part_grid_);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
ColPartition* partner = part->SingletonPartner(true);
|
|
if (partner != NULL) {
|
|
if (partner->SingletonPartner(false) != part) {
|
|
tprintf("Ooops! Partition:(%d partners)",
|
|
part->upper_partners()->length());
|
|
part->Print();
|
|
tprintf("has singleton partner:(%d partners",
|
|
partner->lower_partners()->length());
|
|
partner->Print();
|
|
tprintf("but its singleton partner is:");
|
|
if (partner->SingletonPartner(false) == NULL)
|
|
tprintf("NULL\n");
|
|
else
|
|
partner->SingletonPartner(false)->Print();
|
|
}
|
|
ASSERT_HOST(partner->SingletonPartner(false) == part);
|
|
} else if (part->SingletonPartner(false) != NULL) {
|
|
ColPartitionSet* column_set = best_columns_[gsearch.GridY()];
|
|
int column_count = column_set->ColumnCount();
|
|
part->SmoothPartnerRun(column_count * 2 + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper functions for TransformToBlocks.
|
|
// Add the part to the temp list in the correct order.
|
|
void ColumnFinder::AddToTempPartList(ColPartition* part,
|
|
ColPartition_CLIST* temp_list) {
|
|
int mid_y = part->MidY();
|
|
ColPartition_C_IT it(temp_list);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* test_part = it.data();
|
|
if (part->type() == PT_NOISE || test_part->type() == PT_NOISE)
|
|
continue; // Noise stays in sequence.
|
|
if (test_part == part->SingletonPartner(false))
|
|
break; // Insert before its lower partner.
|
|
int neighbour_bottom = test_part->median_bottom();
|
|
int neighbour_top = test_part->median_top();
|
|
int neighbour_y = (neighbour_bottom + neighbour_top) / 2;
|
|
if (neighbour_y < mid_y)
|
|
break; // part is above test_part so insert it.
|
|
if (!part->HOverlaps(*test_part) && !part->WithinSameMargins(*test_part))
|
|
continue; // Incompatibles stay in order
|
|
}
|
|
if (it.cycled_list()) {
|
|
it.add_to_end(part);
|
|
} else {
|
|
it.add_before_stay_put(part);
|
|
}
|
|
}
|
|
|
|
// Add everything from the temp list to the work_set assuming correct order.
|
|
void ColumnFinder::EmptyTempPartList(ColPartition_CLIST* temp_list,
|
|
WorkingPartSet_LIST* work_set) {
|
|
ColPartition_C_IT it(temp_list);
|
|
while (!it.empty()) {
|
|
it.extract()->AddToWorkingSet(bleft_, tright_, resolution_,
|
|
&good_parts_, work_set);
|
|
it.forward();
|
|
}
|
|
}
|
|
|
|
// Transform the grid of partitions to the output blocks.
|
|
void ColumnFinder::TransformToBlocks(BLOCK_LIST* blocks,
|
|
TO_BLOCK_LIST* to_blocks) {
|
|
WorkingPartSet_LIST work_set;
|
|
ColPartitionSet* column_set = NULL;
|
|
ColPartition_IT noise_it(&noise_parts_);
|
|
// The temp_part_list holds a list of parts at the same grid y coord
|
|
// so they can be added in the correct order. This prevents thin objects
|
|
// like horizontal lines going before the text lines above them.
|
|
ColPartition_CLIST temp_part_list;
|
|
// Iterate the ColPartitions in the grid. It starts at the top
|
|
GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
|
|
gsearch(&part_grid_);
|
|
gsearch.StartFullSearch();
|
|
int prev_grid_y = -1;
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
int grid_y = gsearch.GridY();
|
|
if (grid_y != prev_grid_y) {
|
|
EmptyTempPartList(&temp_part_list, &work_set);
|
|
prev_grid_y = grid_y;
|
|
}
|
|
if (best_columns_[grid_y] != column_set) {
|
|
column_set = best_columns_[grid_y];
|
|
// Every line should have a non-null best column.
|
|
ASSERT_HOST(column_set != NULL);
|
|
column_set->ChangeWorkColumns(bleft_, tright_, resolution_,
|
|
&good_parts_, &work_set);
|
|
if (textord_debug_tabfind)
|
|
tprintf("Changed column groups at grid index %d, y=%d\n",
|
|
gsearch.GridY(), gsearch.GridY() * gridsize());
|
|
}
|
|
if (part->type() == PT_NOISE) {
|
|
noise_it.add_to_end(part);
|
|
} else {
|
|
AddToTempPartList(part, &temp_part_list);
|
|
}
|
|
}
|
|
EmptyTempPartList(&temp_part_list, &work_set);
|
|
// Now finish all working sets and transfer ColPartitionSets to block_sets.
|
|
WorkingPartSet_IT work_it(&work_set);
|
|
while (!work_it.empty()) {
|
|
WorkingPartSet* working_set = work_it.extract();
|
|
working_set->ExtractCompletedBlocks(bleft_, tright_, resolution_,
|
|
&good_parts_, blocks, to_blocks);
|
|
delete working_set;
|
|
work_it.forward();
|
|
}
|
|
}
|
|
|
|
// Helper reflects a list of blobs in the y-axis.
|
|
// Only reflects the BLOBNBOX bounding box. Not the blobs or outlines below.
|
|
static void ReflectBlobList(BLOBNBOX_LIST* bblobs) {
|
|
BLOBNBOX_IT it(bblobs);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
it.data()->reflect_box_in_y_axis();
|
|
}
|
|
}
|
|
|
|
// Reflect the blob boxes (but not the outlines) in the y-axis so that
|
|
// the blocks get created in the correct RTL order. Reflects the blobs
|
|
// in the input_block and the bblobs list.
|
|
// The reflection is undone in RotateAndReskewBlocks by
|
|
// reflecting the blocks themselves, and then recomputing the blob bounding
|
|
// boxes.
|
|
void ColumnFinder::ReflectForRtl(TO_BLOCK* input_block, BLOBNBOX_LIST* bblobs) {
|
|
ReflectBlobList(bblobs);
|
|
ReflectBlobList(&input_block->blobs);
|
|
ReflectBlobList(&input_block->small_blobs);
|
|
ReflectBlobList(&input_block->noise_blobs);
|
|
ReflectBlobList(&input_block->large_blobs);
|
|
// Update the denorm with the reflection.
|
|
DENORM* new_denorm = new DENORM;
|
|
new_denorm->SetupNormalization(NULL, NULL, denorm_,
|
|
0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.0f);
|
|
denorm_ = new_denorm;
|
|
}
|
|
|
|
// Helper fixes up blobs and cblobs to match the desired rotation,
|
|
// exploding multi-outline blobs back to single blobs and accumulating
|
|
// the bounding box widths and heights.
|
|
static void RotateAndExplodeBlobList(const FCOORD& blob_rotation,
|
|
BLOBNBOX_LIST* bblobs,
|
|
STATS* widths,
|
|
STATS* heights) {
|
|
BLOBNBOX_IT it(bblobs);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
BLOBNBOX* blob = it.data();
|
|
C_BLOB* cblob = blob->cblob();
|
|
C_OUTLINE_LIST* outlines = cblob->out_list();
|
|
C_OUTLINE_IT ol_it(outlines);
|
|
if (!outlines->singleton()) {
|
|
// This blob has multiple outlines from CJK repair.
|
|
// Explode the blob back into individual outlines.
|
|
for (;!ol_it.empty(); ol_it.forward()) {
|
|
C_OUTLINE* outline = ol_it.extract();
|
|
BLOBNBOX* new_blob = BLOBNBOX::RealBlob(outline);
|
|
// This blob will be revisited later since we add_after_stay_put here.
|
|
// This means it will get rotated and have its width/height added to
|
|
// the stats below.
|
|
it.add_after_stay_put(new_blob);
|
|
}
|
|
it.extract();
|
|
delete cblob;
|
|
delete blob;
|
|
} else {
|
|
if (blob_rotation.x() != 1.0f || blob_rotation.y() != 0.0f) {
|
|
cblob->rotate(blob_rotation);
|
|
}
|
|
blob->compute_bounding_box();
|
|
widths->add(blob->bounding_box().width(), 1);
|
|
heights->add(blob->bounding_box().height(), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Undo the deskew that was done in FindTabVectors, as recognition is done
|
|
// without correcting blobs or blob outlines for skew.
|
|
// Reskew the completed blocks to put them back to the original rotated coords
|
|
// that were created by CorrectOrientation.
|
|
// If the input_is_rtl, then reflect the blocks in the y-axis to undo the
|
|
// reflection that was done before FindTabVectors.
|
|
// Blocks that were identified as vertical text (relative to the rotated
|
|
// coordinates) are further rotated so the text lines are horizontal.
|
|
// blob polygonal outlines are rotated to match the position of the blocks
|
|
// that they are in, and their bounding boxes are recalculated to be accurate.
|
|
// Record appropriate inverse transformations and required
|
|
// classifier transformation in the blocks.
|
|
void ColumnFinder::RotateAndReskewBlocks(bool input_is_rtl,
|
|
TO_BLOCK_LIST* blocks) {
|
|
if (input_is_rtl) {
|
|
// The skew is backwards because of the reflection.
|
|
FCOORD tmp = deskew_;
|
|
deskew_ = reskew_;
|
|
reskew_ = tmp;
|
|
}
|
|
TO_BLOCK_IT it(blocks);
|
|
int block_index = 1;
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
TO_BLOCK* to_block = it.data();
|
|
BLOCK* block = to_block->block;
|
|
// Blocks are created on the deskewed blob outlines in TransformToBlocks()
|
|
// so we need to reskew them back to page coordinates.
|
|
if (input_is_rtl) {
|
|
block->reflect_polygon_in_y_axis();
|
|
}
|
|
block->rotate(reskew_);
|
|
// Copy the right_to_left flag to the created block.
|
|
block->set_right_to_left(input_is_rtl);
|
|
// Save the skew angle in the block for baseline computations.
|
|
block->set_skew(reskew_);
|
|
block->set_index(block_index++);
|
|
FCOORD blob_rotation = ComputeBlockAndClassifyRotation(block);
|
|
// Rotate all the blobs if needed and recompute the bounding boxes.
|
|
// Compute the block median blob width and height as we go.
|
|
STATS widths(0, block->bounding_box().width());
|
|
STATS heights(0, block->bounding_box().height());
|
|
RotateAndExplodeBlobList(blob_rotation, &to_block->blobs,
|
|
&widths, &heights);
|
|
TO_ROW_IT row_it(to_block->get_rows());
|
|
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
|
|
TO_ROW* row = row_it.data();
|
|
RotateAndExplodeBlobList(blob_rotation, row->blob_list(),
|
|
&widths, &heights);
|
|
}
|
|
block->set_median_size(static_cast<int>(widths.median() + 0.5),
|
|
static_cast<int>(heights.median() + 0.5));
|
|
if (textord_debug_tabfind >= 2)
|
|
tprintf("Block median size = (%d, %d)\n",
|
|
block->median_size().x(), block->median_size().y());
|
|
}
|
|
}
|
|
|
|
// Computes the rotations for the block (to make textlines horizontal) and
|
|
// for the blobs (for classification) and sets the appropriate members
|
|
// of the given block.
|
|
// Returns the rotation that needs to be applied to the blobs to make
|
|
// them sit in the rotated block.
|
|
FCOORD ColumnFinder::ComputeBlockAndClassifyRotation(BLOCK* block) {
|
|
// The text_rotation_ tells us the gross page text rotation that needs
|
|
// to be applied for classification
|
|
// TODO(rays) find block-level classify rotation by orientation detection.
|
|
// In the mean time, assume that "up" for text printed in the minority
|
|
// direction (PT_VERTICAL_TEXT) is perpendicular to the line of reading.
|
|
// Accomplish this by zero-ing out the text rotation. This covers the
|
|
// common cases of image credits in documents written in Latin scripts
|
|
// and page headings for predominantly vertically written CJK books.
|
|
FCOORD classify_rotation(text_rotation_);
|
|
FCOORD block_rotation(1.0f, 0.0f);
|
|
if (block->poly_block()->isA() == PT_VERTICAL_TEXT) {
|
|
// Vertical text needs to be 90 degrees rotated relative to the rest.
|
|
// If the rest has a 90 degree rotation already, use the inverse, making
|
|
// the vertical text the original way up. Otherwise use 90 degrees
|
|
// clockwise.
|
|
if (rerotate_.x() == 0.0f)
|
|
block_rotation = rerotate_;
|
|
else
|
|
block_rotation = FCOORD(0.0f, -1.0f);
|
|
block->rotate(block_rotation);
|
|
classify_rotation = FCOORD(1.0f, 0.0f);
|
|
}
|
|
block_rotation.rotate(rotation_);
|
|
// block_rotation is now what we have done to the blocks. Now do the same
|
|
// thing to the blobs, but save the inverse rotation in the block, as that
|
|
// is what we need to DENORM back to the image coordinates.
|
|
FCOORD blob_rotation(block_rotation);
|
|
block_rotation.set_y(-block_rotation.y());
|
|
block->set_re_rotation(block_rotation);
|
|
block->set_classify_rotation(classify_rotation);
|
|
if (textord_debug_tabfind) {
|
|
tprintf("Blk %d, type %d rerotation(%.2f, %.2f), char(%.2f,%.2f), box:",
|
|
block->index(), block->poly_block()->isA(),
|
|
block->re_rotation().x(), block->re_rotation().y(),
|
|
classify_rotation.x(), classify_rotation.y());
|
|
block->bounding_box().print();
|
|
}
|
|
return blob_rotation;
|
|
}
|
|
|
|
} // namespace tesseract.
|