tesseract/wordrec/chopper.cpp
david.eger@gmail.com 4ddb3e5941 Good moming, Good aftemoon.
During our initial chopping for each word, pay attention to whether a
dangerous ambiguity (like rn <-> m) would lead us to a dictionary word.
If so, make sure that blob gets chopped so that we can evaluate said
dictionary word during the segmentation search.

Large accuracy improvement, especially on English printed books (~9%).



git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@713 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2012-03-28 21:02:54 +00:00

1055 lines
34 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: chopper.c (Formerly chopper.c)
* Description:
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Tue Jul 30 16:18:52 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include <math.h>
#include "chopper.h"
#include "assert.h"
#include "associate.h"
#include "callcpp.h"
#include "const.h"
#include "findseam.h"
#include "freelist.h"
#include "globals.h"
#include "makechop.h"
#include "render.h"
#include "pageres.h"
#include "permute.h"
#include "seam.h"
#include "stopper.h"
#include "structures.h"
#include "unicharset.h"
#include "wordclass.h"
#include "wordrec.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
/**
* @name preserve_outline_tree
*
* Copy the list of outlines.
*/
void preserve_outline(EDGEPT *start) {
EDGEPT *srcpt;
if (start == NULL)
return;
srcpt = start;
do {
srcpt->flags[1] = 1;
srcpt = srcpt->next;
}
while (srcpt != start);
srcpt->flags[1] = 2;
}
/**************************************************************************/
void preserve_outline_tree(TESSLINE *srcline) {
TESSLINE *outline;
for (outline = srcline; outline != NULL; outline = outline->next) {
preserve_outline (outline->loop);
}
}
/**
* @name restore_outline_tree
*
* Copy the list of outlines.
*/
EDGEPT *restore_outline(EDGEPT *start) {
EDGEPT *srcpt;
EDGEPT *real_start;
EDGEPT *deadpt;
if (start == NULL)
return NULL;
srcpt = start;
do {
if (srcpt->flags[1] == 2)
break;
srcpt = srcpt->next;
}
while (srcpt != start);
real_start = srcpt;
do {
if (srcpt->flags[1] == 0) {
deadpt = srcpt;
srcpt = srcpt->next;
srcpt->prev = deadpt->prev;
deadpt->prev->next = srcpt;
deadpt->prev->vec.x = srcpt->pos.x - deadpt->prev->pos.x;
deadpt->prev->vec.y = srcpt->pos.y - deadpt->prev->pos.y;
delete deadpt;
}
else
srcpt = srcpt->next;
}
while (srcpt != real_start);
return real_start;
}
/******************************************************************************/
void restore_outline_tree(TESSLINE *srcline) {
TESSLINE *outline;
for (outline = srcline; outline != NULL; outline = outline->next) {
outline->loop = restore_outline (outline->loop);
outline->start = outline->loop->pos;
}
}
/**
* @name attempt_blob_chop
*
* Try to split the this blob after this one. Check to make sure that
* it was successful.
*/
namespace tesseract {
SEAM *Wordrec::attempt_blob_chop(TWERD *word, TBLOB *blob, inT32 blob_number,
bool italic_blob, SEAMS seam_list) {
TBLOB *next_blob = blob->next;
TBLOB *other_blob;
SEAM *seam;
if (repair_unchopped_blobs)
preserve_outline_tree (blob->outlines);
other_blob = new TBLOB; /* Make new blob */
other_blob->next = blob->next;
other_blob->outlines = NULL;
blob->next = other_blob;
seam = NULL;
if (prioritize_division) {
TPOINT location;
if (divisible_blob(blob, italic_blob, &location)) {
seam = new_seam(0.0f, location, NULL, NULL, NULL);
}
}
if (seam == NULL)
seam = pick_good_seam(blob);
if (seam == NULL && word->latin_script) {
// If the blob can simply be divided into outlines, then do that.
TPOINT location;
if (divisible_blob(blob, italic_blob, &location)) {
seam = new_seam(0.0f, location, NULL, NULL, NULL);
}
}
if (chop_debug) {
if (seam != NULL) {
print_seam ("Good seam picked=", seam);
}
else
cprintf ("\n** no seam picked *** \n");
}
if (seam) {
apply_seam(blob, other_blob, italic_blob, seam);
}
if ((seam == NULL) ||
(blob->outlines == NULL) ||
(other_blob->outlines == NULL) ||
total_containment (blob, other_blob) ||
check_blob (other_blob) ||
!(check_seam_order (blob, seam) &&
check_seam_order (other_blob, seam)) ||
any_shared_split_points (seam_list, seam) ||
!test_insert_seam(seam_list, blob_number, blob, word->blobs)) {
blob->next = next_blob;
if (seam) {
undo_seam(blob, other_blob, seam);
delete_seam(seam);
#ifndef GRAPHICS_DISABLED
if (chop_debug) {
if (chop_debug >2)
display_blob(blob, Red);
cprintf ("\n** seam being removed ** \n");
}
#endif
} else {
delete other_blob;
}
if (repair_unchopped_blobs)
restore_outline_tree (blob->outlines);
return (NULL);
}
return (seam);
}
SEAM *Wordrec::chop_numbered_blob(TWERD *word, inT32 blob_number,
bool italic_blob, SEAMS seam_list) {
TBLOB *blob;
inT16 x;
blob = word->blobs;
for (x = 0; x < blob_number; x++)
blob = blob->next;
return attempt_blob_chop(word, blob, blob_number,
italic_blob, seam_list);
}
SEAM *Wordrec::chop_overlapping_blob(const GenericVector<TBOX>& boxes,
WERD_RES *word_res, inT32 *blob_number,
bool italic_blob, SEAMS seam_list) {
TWERD *word = word_res->chopped_word;
TBLOB *blob;
*blob_number = 0;
blob = word->blobs;
while (blob != NULL) {
TPOINT topleft, botright;
topleft.x = blob->bounding_box().left();
topleft.y = blob->bounding_box().top();
botright.x = blob->bounding_box().right();
botright.y = blob->bounding_box().bottom();
TPOINT original_topleft, original_botright;
word_res->denorm.DenormTransform(topleft, &original_topleft);
word_res->denorm.DenormTransform(botright, &original_botright);
TBOX original_box = TBOX(original_topleft.x, original_botright.y,
original_botright.x, original_topleft.y);
bool almost_equal_box = false;
int num_overlap = 0;
for (int i = 0; i < boxes.size(); i++) {
if (original_box.overlap_fraction(boxes[i]) > 0.125)
num_overlap++;
if (original_box.almost_equal(boxes[i], 3))
almost_equal_box = true;
}
TPOINT location;
if (divisible_blob(blob, italic_blob, &location) ||
(!almost_equal_box && num_overlap > 1)) {
SEAM *seam = attempt_blob_chop(word, blob, *blob_number,
italic_blob, seam_list);
if (seam != NULL)
return seam;
}
*blob_number = *blob_number + 1;
blob = blob->next;
}
*blob_number = -1;
return NULL;
}
} // namespace tesseract
/**
* @name any_shared_split_points
*
* Return true if any of the splits share a point with this one.
*/
int any_shared_split_points(SEAMS seam_list, SEAM *seam) {
int length;
int index;
length = array_count (seam_list);
for (index = 0; index < length; index++)
if (shared_split_points ((SEAM *) array_value (seam_list, index), seam))
return TRUE;
return FALSE;
}
/**
* @name check_blob
*
* @return true if blob has a non whole outline.
*/
int check_blob(TBLOB *blob) {
TESSLINE *outline;
EDGEPT *edgept;
for (outline = blob->outlines; outline != NULL; outline = outline->next) {
edgept = outline->loop;
do {
if (edgept == NULL)
break;
edgept = edgept->next;
}
while (edgept != outline->loop);
if (edgept == NULL)
return 1;
}
return 0;
}
namespace tesseract {
/**
* @name improve_one_blob
*
* Start with the current word of blobs and its classification. Find
* the worst blobs and try to divide it up to improve the ratings.
*/
bool Wordrec::improve_one_blob(WERD_RES *word_res,
BLOB_CHOICE_LIST_VECTOR *char_choices,
inT32 *blob_number,
SEAMS *seam_list,
DANGERR *fixpt,
bool split_next_to_fragment,
BlamerBundle *blamer_bundle) {
TWERD* word = word_res->chopped_word;
TBLOB *blob;
inT16 x = 0;
float rating_ceiling = MAX_FLOAT32;
BLOB_CHOICE_LIST *answer;
BLOB_CHOICE_IT answer_it;
SEAM *seam;
do {
*blob_number = select_blob_to_split_from_fixpt(fixpt);
bool split_point_from_dict = (*blob_number != -1);
if (split_point_from_dict) {
fixpt->clear();
} else {
*blob_number = select_blob_to_split(*char_choices, rating_ceiling,
split_next_to_fragment);
}
if (chop_debug)
cprintf("blob_number = %d\n", *blob_number);
if (*blob_number == -1)
return false;
// TODO(rays) it may eventually help to allow italic_blob to be true,
seam = chop_numbered_blob(word, *blob_number, false, *seam_list);
if (seam != NULL)
break;
/* Must split null blobs */
answer = char_choices->get(*blob_number);
if (answer == NULL)
return false;
answer_it.set_to_list(answer);
if (!split_point_from_dict) {
// We chopped the worst rated blob, try something else next time.
rating_ceiling = answer_it.data()->rating();
}
} while (true);
/* Split OK */
for (blob = word->blobs; x < *blob_number; x++) {
blob = blob->next;
}
*seam_list =
insert_seam (*seam_list, *blob_number, seam, blob, word->blobs);
delete char_choices->get(*blob_number);
answer = classify_blob(blob, word_res->denorm, "improve 1:", Red,
blamer_bundle);
char_choices->insert(answer, *blob_number);
answer = classify_blob(blob->next, word_res->denorm, "improve 2:", Yellow,
blamer_bundle);
char_choices->set(answer, *blob_number + 1);
return true;
}
/**
* @name modify_blob_choice
*
* Takes a blob and its chop index, converts that chop index to a
* unichar_id, and stores the chop index in place of the blob's
* original unichar_id.
*/
void Wordrec::modify_blob_choice(BLOB_CHOICE_LIST *answer,
int chop_index) {
char chop_index_string[2];
if (chop_index <= 9) {
snprintf(chop_index_string, sizeof(chop_index_string), "%d", chop_index);
} else {
chop_index_string[0] = static_cast<char>('A' - 10 + chop_index);
chop_index_string[1] = '\0';
}
UNICHAR_ID unichar_id = unicharset.unichar_to_id(chop_index_string);
if (unichar_id == INVALID_UNICHAR_ID) {
// If the word is very long, we might exhaust the possibilities.
unichar_id = 1;
}
BLOB_CHOICE_IT answer_it(answer);
BLOB_CHOICE *modified_blob =
new BLOB_CHOICE(unichar_id,
answer_it.data()->rating(),
answer_it.data()->certainty(),
answer_it.data()->fontinfo_id(),
answer_it.data()->fontinfo_id2(),
answer_it.data()->script_id(),
answer_it.data()->min_xheight(),
answer_it.data()->max_xheight(),
answer_it.data()->adapted());
answer->clear();
answer_it.set_to_list(answer);
answer_it.add_after_then_move(modified_blob);
}
/**
* @name chop_one_blob
*
* Start with the current one-blob word and its classification. Find
* the worst blobs and try to divide it up to improve the ratings.
* Used for testing chopper.
*/
bool Wordrec::chop_one_blob(TWERD *word,
BLOB_CHOICE_LIST_VECTOR *char_choices,
inT32 *blob_number,
SEAMS *seam_list,
int *right_chop_index) {
TBLOB *blob;
inT16 x = 0;
float rating_ceiling = MAX_FLOAT32;
BLOB_CHOICE_LIST *answer;
BLOB_CHOICE_IT answer_it;
SEAM *seam;
UNICHAR_ID unichar_id = 0;
int left_chop_index = 0;
do {
*blob_number = select_blob_to_split(*char_choices, rating_ceiling, false);
if (chop_debug)
cprintf("blob_number = %d\n", *blob_number);
if (*blob_number == -1)
return false;
seam = chop_numbered_blob(word, *blob_number, true, *seam_list);
if (seam != NULL)
break;
/* Must split null blobs */
answer = char_choices->get(*blob_number);
if (answer == NULL)
return false;
answer_it.set_to_list(answer);
rating_ceiling = answer_it.data()->rating(); // try a different blob
} while (true);
/* Split OK */
for (blob = word->blobs; x < *blob_number; x++) {
blob = blob->next;
}
if (chop_debug) {
tprintf("Chop made blob1:");
blob->bounding_box().print();
tprintf("and blob2:");
blob->next->bounding_box().print();
}
*seam_list = insert_seam(*seam_list, *blob_number, seam, blob, word->blobs);
answer = char_choices->get(*blob_number);
answer_it.set_to_list(answer);
unichar_id = answer_it.data()->unichar_id();
float rating = answer_it.data()->rating() / exp(1.0);
left_chop_index = atoi(unicharset.id_to_unichar(unichar_id));
delete char_choices->get(*blob_number);
// combine confidence w/ serial #
answer = fake_classify_blob(0, rating, -rating);
modify_blob_choice(answer, left_chop_index);
char_choices->insert(answer, *blob_number);
answer = fake_classify_blob(0, rating - 0.125f, -rating);
modify_blob_choice(answer, ++*right_chop_index);
char_choices->set(answer, *blob_number + 1);
return true;
}
bool Wordrec::chop_one_blob2(const GenericVector<TBOX>& boxes,
WERD_RES *word_res,
SEAMS *seam_list) {
inT32 blob_number;
inT16 x = 0;
TBLOB *blob;
SEAM *seam;
seam = chop_overlapping_blob(boxes, word_res, &blob_number,
true, *seam_list);
if (seam == NULL)
return false;
/* Split OK */
for (blob = word_res->chopped_word->blobs; x < blob_number; x++) {
blob = blob->next;
}
if (chop_debug) {
tprintf("Chop made blob1:");
blob->bounding_box().print();
tprintf("and blob2:");
blob->next->bounding_box().print();
}
*seam_list = insert_seam(*seam_list, blob_number, seam, blob,
word_res->chopped_word->blobs);
return true;
}
} // namespace tesseract
/**
* @name check_seam_order
*
* Make sure that each of the splits in this seam match to outlines
* in this blob. If any of the splits could not correspond to this
* blob then there is a problem (and FALSE should be returned to the
* caller).
*/
inT16 check_seam_order(TBLOB *blob, SEAM *seam) {
TESSLINE *outline;
TESSLINE *last_outline;
inT8 found_em[3];
if (seam->split1 == NULL || seam->split1 == NULL || blob == NULL)
return (TRUE);
found_em[0] = found_em[1] = found_em[2] = FALSE;
for (outline = blob->outlines; outline; outline = outline->next) {
if (!found_em[0] &&
((seam->split1 == NULL) ||
is_split_outline (outline, seam->split1))) {
found_em[0] = TRUE;
}
if (!found_em[1] &&
((seam->split2 == NULL) ||
is_split_outline (outline, seam->split2))) {
found_em[1] = TRUE;
}
if (!found_em[2] &&
((seam->split3 == NULL) ||
is_split_outline (outline, seam->split3))) {
found_em[2] = TRUE;
}
last_outline = outline;
}
if (!found_em[0] || !found_em[1] || !found_em[2])
return (FALSE);
else
return (TRUE);
}
namespace tesseract {
/**
* @name chop_word_main
*
* Classify the blobs in this word and permute the results. Find the
* worst blob in the word and chop it up. Continue this process until
* a good answer has been found or all the blobs have been chopped up
* enough. Return the word level ratings.
*/
BLOB_CHOICE_LIST_VECTOR *Wordrec::chop_word_main(WERD_RES *word) {
TBLOB *blob;
int index;
int did_chopping;
STATE state;
BLOB_CHOICE_LIST *match_result;
MATRIX *ratings = NULL;
DANGERR fixpt; /*dangerous ambig */
inT32 bit_count; //no of bits
BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR();
BLOB_CHOICE_LIST_VECTOR *best_char_choices = new BLOB_CHOICE_LIST_VECTOR();
did_chopping = 0;
for (blob = word->chopped_word->blobs, index = 0;
blob != NULL; blob = blob->next, index++) {
match_result = classify_blob(blob, word->denorm, "chop_word:", Green,
word->blamer_bundle);
if (match_result == NULL)
cprintf("Null classifier output!\n");
*char_choices += match_result;
}
bit_count = index - 1;
set_n_ones(&state, char_choices->length() - 1);
bool acceptable = false;
bool replaced = false;
bool best_choice_updated =
getDict().permute_characters(*char_choices, word->best_choice,
word->raw_choice);
if (best_choice_updated &&
getDict().AcceptableChoice(char_choices, word->best_choice, &fixpt,
CHOPPER_CALLER, &replaced)) {
acceptable = true;
}
if (replaced)
update_blob_classifications(word->chopped_word, *char_choices);
CopyCharChoices(*char_choices, best_char_choices);
if (!acceptable) { // do more work to find a better choice
did_chopping = 1;
bool best_choice_acceptable = false;
if (chop_enable)
improve_by_chopping(word,
char_choices,
&state,
best_char_choices,
&fixpt,
&best_choice_acceptable);
if (chop_debug)
print_seams ("Final seam list:", word->seam_array);
if (word->blamer_bundle != NULL &&
!ChoiceIsCorrect(*word->uch_set, word->best_choice,
word->blamer_bundle->truth_text)) {
set_chopper_blame(word);
}
// The force_word_assoc is almost redundant to enable_assoc. However,
// it is not conditioned on the dict behavior. For CJK, we need to force
// the associator to be invoked. When we figure out the exact behavior
// of dict on CJK, we can remove the flag if it turns out to be redundant.
if ((wordrec_enable_assoc && !best_choice_acceptable) || force_word_assoc) {
ratings = word_associator(false, word, &state, best_char_choices,
&fixpt, &state);
}
}
best_char_choices = rebuild_current_state(word, &state, best_char_choices,
ratings);
// If after running only the chopper best_choice is incorrect and no blame
// has been yet set, blame the classifier if best_choice is classifier's
// top choice and is a dictionary word (i.e. language model could not have
// helped). Otherwise blame the tradeoff between the classifier and
// the old language model (permuters).
if (word->blamer_bundle != NULL &&
word->blamer_bundle->incorrect_result_reason == IRR_CORRECT &&
ratings == NULL && // only the chopper was run
!ChoiceIsCorrect(*word->uch_set, word->best_choice,
word->blamer_bundle->truth_text)) {
if (word->best_choice != NULL &&
Dict::valid_word_permuter(word->best_choice->permuter(), false)) {
// Find out whether best choice is a top choice.
word->blamer_bundle->best_choice_is_dict_and_top_choice = true;
for (int i = 0; i < word->best_choice->length(); ++i) {
BLOB_CHOICE_IT blob_choice_it(best_char_choices->get(i));
ASSERT_HOST(!blob_choice_it.empty());
BLOB_CHOICE *first_choice = NULL;
for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list();
blob_choice_it.forward()) { // find first non-fragment choice
if (!(getDict().getUnicharset().get_fragment(
blob_choice_it.data()->unichar_id()))) {
first_choice = blob_choice_it.data();
break;
}
}
ASSERT_HOST(first_choice != NULL);
if (first_choice->unichar_id() != word->best_choice->unichar_id(i)) {
word->blamer_bundle->best_choice_is_dict_and_top_choice = false;
break;
}
}
}
STRING debug;
if (word->blamer_bundle->best_choice_is_dict_and_top_choice) {
debug = "Best choice is: incorrect, top choice, dictionary word";
debug += " with permuter ";
debug += word->best_choice->permuter_name();
} else {
debug = "Classifier/Old LM tradeoff is to blame";
}
word->blamer_bundle->SetBlame(
word->blamer_bundle->best_choice_is_dict_and_top_choice ?
IRR_CLASSIFIER : IRR_CLASS_OLD_LM_TRADEOFF,
debug, word->best_choice, wordrec_debug_blamer);
}
if (word->blamer_bundle != NULL && this->fill_lattice_ != NULL) {
if (ratings == NULL) {
ratings = word_associator(true, word, NULL, NULL, NULL, NULL);
}
CallFillLattice(*ratings, getDict().getBestChoices(),
*word->uch_set, word->blamer_bundle);
}
if (ratings != NULL) {
if (wordrec_debug_level > 0) {
tprintf("Final Ratings Matrix:\n");
ratings->print(getDict().getUnicharset());
}
ratings->delete_matrix_pointers();
delete ratings;
}
getDict().FilterWordChoices();
// TODO(antonova, eger): check that FilterWordChoices() does not filter
// out anything useful for word bigram or phrase search.
// TODO(antonova, eger): when implementing word bigram and phrase search
// we will need to think carefully about how to replace a word with its
// alternative choice.
// In particular it might be required to save the segmentation state
// associated with the word, so that best_char_choices could be updated
// by rebuild_current_state() correctly.
if (save_alt_choices) SaveAltChoices(getDict().getBestChoices(), word);
char_choices->delete_data_pointers();
delete char_choices;
return best_char_choices;
}
/**
* @name improve_by_chopping
*
* Start with the current word of blobs and its classification. Find
* the worst blobs and try to divide them up to improve the ratings.
* As long as ratings are produced by the new blob splitting. When
* all the splitting has been accomplished all the ratings memory is
* reclaimed.
*/
void Wordrec::improve_by_chopping(WERD_RES *word,
BLOB_CHOICE_LIST_VECTOR *char_choices,
STATE *best_state,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
DANGERR *fixpt,
bool *best_choice_acceptable) {
inT32 blob_number;
float old_best;
bool updated_best_choice = false;
while (1) { // improvement loop
old_best = word->best_choice->rating();
if (improve_one_blob(word, char_choices,
&blob_number, &word->seam_array,
fixpt, (fragments_guide_chopper &&
word->best_choice->fragment_mark()),
word->blamer_bundle)) {
getDict().LogNewSplit(blob_number);
updated_best_choice =
getDict().permute_characters(*char_choices, word->best_choice,
word->raw_choice);
if (old_best > word->best_choice->rating()) {
set_n_ones(best_state, char_choices->length() - 1);
} else {
insert_new_chunk(best_state, blob_number, char_choices->length() - 2);
fixpt->clear();
}
if (chop_debug)
print_state("best state = ",
best_state, count_blobs(word->chopped_word->blobs) - 1);
} else {
break;
}
// Check if we should break from the loop.
bool done = false;
bool replaced = false;
if ((updated_best_choice &&
(*best_choice_acceptable =
getDict().AcceptableChoice(char_choices, word->best_choice,
fixpt, CHOPPER_CALLER, &replaced))) ||
char_choices->length() >= MAX_NUM_CHUNKS) {
done = true;
}
if (replaced) update_blob_classifications(word->chopped_word,
*char_choices);
if (updated_best_choice) CopyCharChoices(*char_choices, best_char_choices);
if (done) break;
}
}
/**********************************************************************
* select_blob_to_split
*
* These are the results of the last classification. Find a likely
* place to apply splits. If none, return -1.
**********************************************************************/
inT16 Wordrec::select_blob_to_split(const BLOB_CHOICE_LIST_VECTOR &char_choices,
float rating_ceiling,
bool split_next_to_fragment) {
BLOB_CHOICE_IT blob_choice_it;
BLOB_CHOICE *blob_choice;
BLOB_CHOICE_IT temp_it;
int x;
float worst = -MAX_FLOAT32;
int worst_index = -1;
float worst_near_fragment = -MAX_FLOAT32;
int worst_index_near_fragment = -1;
const CHAR_FRAGMENT **fragments = NULL;
if (chop_debug) {
if (rating_ceiling < MAX_FLOAT32)
cprintf("rating_ceiling = %8.4f\n", rating_ceiling);
else
cprintf("rating_ceiling = No Limit\n");
}
if (split_next_to_fragment && char_choices.length() > 0) {
fragments = new const CHAR_FRAGMENT *[char_choices.length()];
if (char_choices.get(0) != NULL) {
temp_it.set_to_list(char_choices.get(0));
fragments[0] = getDict().getUnicharset().get_fragment(
temp_it.data()->unichar_id());
} else {
fragments[0] = NULL;
}
}
for (x = 0; x < char_choices.length(); ++x) {
if (char_choices.get(x) == NULL) {
if (fragments != NULL) {
delete[] fragments;
}
return x;
} else {
blob_choice_it.set_to_list(char_choices.get(x));
blob_choice = blob_choice_it.data();
// Populate fragments for the following position.
if (split_next_to_fragment && x+1 < char_choices.length()) {
if (char_choices.get(x+1) != NULL) {
temp_it.set_to_list(char_choices.get(x+1));
fragments[x+1] = getDict().getUnicharset().get_fragment(
temp_it.data()->unichar_id());
} else {
fragments[x+1] = NULL;
}
}
if (blob_choice->rating() < rating_ceiling &&
blob_choice->certainty() < tessedit_certainty_threshold) {
// Update worst and worst_index.
if (blob_choice->rating() > worst) {
worst_index = x;
worst = blob_choice->rating();
}
if (split_next_to_fragment) {
// Update worst_near_fragment and worst_index_near_fragment.
bool expand_following_fragment =
(x + 1 < char_choices.length() &&
fragments[x+1] != NULL && !fragments[x+1]->is_beginning());
bool expand_preceding_fragment =
(x > 0 && fragments[x-1] != NULL && !fragments[x-1]->is_ending());
if ((expand_following_fragment || expand_preceding_fragment) &&
blob_choice->rating() > worst_near_fragment) {
worst_index_near_fragment = x;
worst_near_fragment = blob_choice->rating();
if (chop_debug) {
cprintf("worst_index_near_fragment=%d"
" expand_following_fragment=%d"
" expand_preceding_fragment=%d\n",
worst_index_near_fragment,
expand_following_fragment,
expand_preceding_fragment);
}
}
}
}
}
}
if (fragments != NULL) {
delete[] fragments;
}
// TODO(daria): maybe a threshold of badness for
// worst_near_fragment would be useful.
return worst_index_near_fragment != -1 ?
worst_index_near_fragment : worst_index;
}
/**********************************************************************
* select_blob_to_split_from_fixpt
*
* Given the fix point from a dictionary search, if there is a single
* dangerous blob that maps to multiple characters, return that blob
* index as a place we need to split. If none, return -1.
**********************************************************************/
inT16 Wordrec::select_blob_to_split_from_fixpt(DANGERR *fixpt) {
if (!fixpt)
return -1;
for (int i = 0; i < fixpt->size(); i++) {
if ((*fixpt)[i].begin == (*fixpt)[i].end &&
(*fixpt)[i].dangerous &&
(*fixpt)[i].correct_is_ngram) {
return (*fixpt)[i].begin;
}
}
return -1;
}
/**********************************************************************
* set_chopper_blame
*
* Check whether chops were made at all the character bounding box boundaries
* in word->truth_word. If not - blame the chopper for an incorrect answer.
**********************************************************************/
void Wordrec::set_chopper_blame(WERD_RES *word) {
BlamerBundle *blamer_bundle = word->blamer_bundle;
assert(blamer_bundle != NULL);
if (blamer_bundle->NoTruth() || !(blamer_bundle->truth_has_char_boxes) ||
word->chopped_word->blobs == NULL) {
return;
}
STRING debug;
bool missing_chop = false;
TBLOB * curr_blob = word->chopped_word->blobs;
int b = 0;
inT16 truth_x;
while (b < blamer_bundle->truth_word.length() && curr_blob != NULL) {
truth_x = blamer_bundle->norm_truth_word.BlobBox(b).right();
if (curr_blob->bounding_box().right() <
(truth_x - blamer_bundle->norm_box_tolerance)) {
curr_blob = curr_blob->next;
continue; // encountered an extra chop, keep looking
} else if (curr_blob->bounding_box().right() >
(truth_x + blamer_bundle->norm_box_tolerance)) {
missing_chop = true;
break;
} else {
curr_blob = curr_blob->next;
++b;
}
}
if (missing_chop || b < blamer_bundle->norm_truth_word.length()) {
STRING debug;
char debug_buffer[256];
if (missing_chop) {
sprintf(debug_buffer, "Detected missing chop (tolerance=%d) at ",
blamer_bundle->norm_box_tolerance);
debug += debug_buffer;
curr_blob->bounding_box().append_debug(&debug);
debug.add_str_int("\nNo chop for truth at x=", truth_x);
} else {
debug.add_str_int("Missing chops for last ",
blamer_bundle->norm_truth_word.length()-b);
debug += " truth box(es)";
}
debug += "\nMaximally chopped word boxes:\n";
for (curr_blob = word->chopped_word->blobs; curr_blob != NULL;
curr_blob = curr_blob->next) {
const TBOX &tbox = curr_blob->bounding_box();
sprintf(debug_buffer, "(%d,%d)->(%d,%d)\n",
tbox.left(), tbox.bottom(), tbox.right(), tbox.top());
debug += debug_buffer;
}
debug += "Truth bounding boxes:\n";
for (b = 0; b < blamer_bundle->norm_truth_word.length(); ++b) {
const TBOX &tbox = blamer_bundle->norm_truth_word.BlobBox(b);
sprintf(debug_buffer, "(%d,%d)->(%d,%d)\n",
tbox.left(), tbox.bottom(), tbox.right(), tbox.top());
debug += debug_buffer;
}
blamer_bundle->SetBlame(IRR_CHOPPER, debug, word->best_choice,
wordrec_debug_blamer);
}
}
/**********************************************************************
* word_associator
*
* Reassociate and classify the blobs in a word. Continue this process
* until a good answer is found or all the possibilities have been tried.
**********************************************************************/
MATRIX *Wordrec::word_associator(bool only_create_ratings_matrix,
WERD_RES *word,
STATE *state,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
DANGERR *fixpt,
STATE *best_state) {
CHUNKS_RECORD chunks_record;
BLOB_WEIGHTS blob_weights;
int x;
int num_chunks;
BLOB_CHOICE_IT blob_choice_it;
num_chunks = array_count(word->seam_array) + 1;
TBLOB* blobs = word->chopped_word->blobs;
chunks_record.ratings = record_piece_ratings(blobs);
chunks_record.chunks = blobs;
chunks_record.word_res = word;
chunks_record.splits = word->seam_array;
chunks_record.chunk_widths = blobs_widths(blobs);
chunks_record.char_widths = blobs_widths(blobs);
/* Save chunk weights */
for (x = 0; x < num_chunks; x++) {
BLOB_CHOICE_LIST* choices = get_piece_rating(chunks_record.ratings, blobs,
chunks_record.word_res->denorm,
word->seam_array, x, x,
word->blamer_bundle);
blob_choice_it.set_to_list(choices);
//This is done by Jetsoft. Divide by zero is possible.
if (blob_choice_it.data()->certainty() == 0) {
blob_weights[x]=0;
} else {
blob_weights[x] =
-(inT16) (10 * blob_choice_it.data()->rating() /
blob_choice_it.data()->certainty());
}
}
chunks_record.weights = blob_weights;
if (chop_debug)
chunks_record.ratings->print(getDict().getUnicharset());
if (!only_create_ratings_matrix) {
if (enable_new_segsearch) {
SegSearch(&chunks_record, word->best_choice,
best_char_choices, word->raw_choice,
state, word->blamer_bundle);
} else {
best_first_search(&chunks_record, best_char_choices, word,
state, fixpt, best_state);
}
}
free_widths(chunks_record.chunk_widths);
free_widths(chunks_record.char_widths);
return chunks_record.ratings;
}
} // namespace tesseract
/**********************************************************************
* total_containment
*
* Check to see if one of these outlines is totally contained within
* the bounding box of the other.
**********************************************************************/
inT16 total_containment(TBLOB *blob1, TBLOB *blob2) {
TBOX box1 = blob1->bounding_box();
TBOX box2 = blob2->bounding_box();
return box1.contains(box2) || box2.contains(box1);
}