tesseract/ccstruct/linlsq.cpp
theraysmith c4f4840fbe Fixed name collision with jpeg library
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@163 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2008-04-22 00:41:37 +00:00

250 lines
7.3 KiB
C++

/**********************************************************************
* File: linlsq.cpp (Formerly llsq.c)
* Description: Linear Least squares fitting code.
* Author: Ray Smith
* Created: Thu Sep 12 08:44:51 BST 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "mfcpch.h"
#include <stdio.h>
#include <math.h>
#include "errcode.h"
#include "linlsq.h"
#ifndef __UNIX__
#define M_PI 3.14159265359
#endif
const ERRCODE EMPTY_LLSQ = "Can't delete from an empty LLSQ";
#define EXTERN
EXTERN double_VAR (pdlsq_posdir_ratio, 4e-6, "Mult of dir to cf pos");
EXTERN double_VAR (pdlsq_threshold_angleavg, 0.1666666,
"Frac of pi for simple fit");
/**********************************************************************
* LLSQ::clear
*
* Function to initialize a LLSQ.
**********************************************************************/
void LLSQ::clear() { //initialize
n = 0; //no elements
sigx = 0; //update accumulators
sigy = 0;
sigxx = 0;
sigxy = 0;
sigyy = 0;
}
/**********************************************************************
* LLSQ::add
*
* Add an element to the accumulator.
**********************************************************************/
void LLSQ::add( //add an element
double x, //xcoord
double y //ycoord
) {
n++; //count elements
sigx += x; //update accumulators
sigy += y;
sigxx += x * x;
sigxy += x * y;
sigyy += y * y;
}
/**********************************************************************
* LLSQ::remove
*
* Delete an element from the acculuator.
**********************************************************************/
void LLSQ::remove( //delete an element
double x, //xcoord
double y //ycoord
) {
if (n <= 0)
//illegal
EMPTY_LLSQ.error ("LLSQ::remove", ABORT, NULL);
n--; //count elements
sigx -= x; //update accumulators
sigy -= y;
sigxx -= x * x;
sigxy -= x * y;
sigyy -= y * y;
}
/**********************************************************************
* LLSQ::m
*
* Return the gradient of the line fit.
**********************************************************************/
double LLSQ::m() { //get gradient
if (n > 1)
return (sigxy - sigx * sigy / n) / (sigxx - sigx * sigx / n);
else
return 0; //too little
}
/**********************************************************************
* LLSQ::c
*
* Return the constant of the line fit.
**********************************************************************/
double LLSQ::c( //get constant
double m //gradient to fit with
) {
if (n > 0)
return (sigy - m * sigx) / n;
else
return 0; //too little
}
/**********************************************************************
* LLSQ::rms
*
* Return the rms error of the fit.
**********************************************************************/
double LLSQ::rms( //get error
double m, //gradient to fit with
double c //constant to fit with
) {
double error; //total error
if (n > 0) {
error =
sigyy + m * (m * sigxx + 2 * (c * sigx - sigxy)) + c * (n * c -
2 * sigy);
if (error >= 0)
error = sqrt (error / n); //sqrt of mean
else
error = 0;
}
else
error = 0; //too little
return error;
}
/**********************************************************************
* LLSQ::spearman
*
* Return the spearman correlation coefficient.
**********************************************************************/
double LLSQ::spearman() { //get error
double error; //total error
if (n > 1) {
error = (sigxx - sigx * sigx / n) * (sigyy - sigy * sigy / n);
if (error > 0) {
error = (sigxy - sigx * sigy / n) / sqrt (error);
}
else
error = 1;
}
else
error = 1; //too little
return error;
}
/**********************************************************************
* PDLSQ::fit
*
* Return all the parameters of the fit to pos/dir.
* The return value is the rms error.
**********************************************************************/
float PDLSQ::fit( //get fit
DIR128 &ang, //output angle
float &sin_ang, //r,theta parameterisation
float &cos_ang,
float &r) {
double a, b; //itermediates
double angle; //resulting angle
double avg_angle; //simple average
double error; //total error
double sinx, cosx; //return values
if (pos.n > 0) {
a = pos.sigxy - pos.sigx * pos.sigy / pos.n
+ pdlsq_posdir_ratio * dir.sigxy;
b =
pos.sigxx - pos.sigyy + (pos.sigy * pos.sigy -
pos.sigx * pos.sigx) / pos.n +
pdlsq_posdir_ratio * (dir.sigxx - dir.sigyy);
if (dir.sigy != 0 || dir.sigx != 0)
avg_angle = atan2 (dir.sigy, dir.sigx);
else
avg_angle = 0;
if ((a != 0 || b != 0) && pos.n > 1)
angle = atan2 (2 * a, b) / 2;
else
angle = avg_angle;
error = avg_angle - angle;
if (error > M_PI / 2) {
error -= M_PI;
angle += M_PI;
}
if (error < -M_PI / 2) {
error += M_PI;
angle -= M_PI;
}
if (error > M_PI * pdlsq_threshold_angleavg
|| error < -M_PI * pdlsq_threshold_angleavg)
angle = avg_angle; //go simple
//convert direction
ang = (inT16) (angle * MODULUS / (2 * M_PI));
sinx = sin (angle);
cosx = cos (angle);
r = (sinx * pos.sigx - cosx * pos.sigy) / pos.n;
// tprintf("x=%g, y=%g, xx=%g, xy=%g, yy=%g, a=%g, b=%g, ang=%g, r=%g\n",
// pos.sigx,pos.sigy,pos.sigxx,pos.sigxy,pos.sigyy,
// a,b,angle,r);
error = dir.sigxx * sinx * sinx + dir.sigyy * cosx * cosx
- 2 * dir.sigxy * sinx * cosx;
error *= pdlsq_posdir_ratio;
error += sinx * sinx * pos.sigxx + cosx * cosx * pos.sigyy
- 2 * sinx * cosx * pos.sigxy
- 2 * r * (sinx * pos.sigx - cosx * pos.sigy) + r * r * pos.n;
if (error >= 0)
//rms value
error = sqrt (error / pos.n);
else
error = 0; //-0
sin_ang = sinx;
cos_ang = cosx;
}
else {
sin_ang = 0.0f;
cos_ang = 0.0f;
ang = 0;
error = 0; //too little
}
return error;
}