mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-05 02:47:00 +08:00
582 lines
20 KiB
Bash
Executable File
582 lines
20 KiB
Bash
Executable File
#!/bin/bash
|
|
# (C) Copyright 2014, Google Inc.
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# This script defines functions that are used by tesstrain.sh
|
|
# For a detailed description of the phases, see
|
|
# https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
|
|
#
|
|
# USAGE: source tesstrain_utils.sh
|
|
|
|
if [ "$(uname)" == "Darwin" ];then
|
|
FONTS_DIR="/Library/Fonts/"
|
|
else
|
|
FONTS_DIR="/usr/share/fonts/"
|
|
fi
|
|
OUTPUT_DIR="/tmp/tesstrain/tessdata"
|
|
OVERWRITE=0
|
|
LINEDATA=0
|
|
RUN_SHAPE_CLUSTERING=0
|
|
EXTRACT_FONT_PROPERTIES=1
|
|
WORKSPACE_DIR=$(mktemp -d)
|
|
|
|
# Logging helper functions.
|
|
tlog() {
|
|
echo -e $* 2>&1 1>&2 | tee -a ${LOG_FILE}
|
|
}
|
|
|
|
err_exit() {
|
|
echo -e "ERROR: "$* 2>&1 1>&2 | tee -a ${LOG_FILE}
|
|
exit 1
|
|
}
|
|
|
|
# Helper function to run a command and append its output to a log. Aborts early
|
|
# if the program file is not found.
|
|
# Usage: run_command CMD ARG1 ARG2...
|
|
run_command() {
|
|
local cmd=$(which $1)
|
|
if [[ -z ${cmd} ]]; then
|
|
for d in api training; do
|
|
cmd=$(which $d/$1)
|
|
if [[ ! -z ${cmd} ]]; then
|
|
break
|
|
fi
|
|
done
|
|
if [[ -z ${cmd} ]]; then
|
|
err_exit "$1 not found"
|
|
fi
|
|
fi
|
|
shift
|
|
tlog "[$(date)] ${cmd} $@"
|
|
"${cmd}" "$@" 2>&1 1>&2 | tee -a ${LOG_FILE}
|
|
# check completion status
|
|
if [[ $? -gt 0 ]]; then
|
|
err_exit "Program $(basename ${cmd}) failed. Abort."
|
|
fi
|
|
}
|
|
|
|
# Check if all the given files exist, or exit otherwise.
|
|
# Used to check required input files and produced output files in each phase.
|
|
# Usage: check_file_readable FILE1 FILE2...
|
|
check_file_readable() {
|
|
for file in $@; do
|
|
if [[ ! -r ${file} ]]; then
|
|
err_exit "${file} does not exist or is not readable"
|
|
fi
|
|
done
|
|
}
|
|
|
|
# Sets the named variable to given value. Aborts if the value is missing or
|
|
# if it looks like a flag.
|
|
# Usage: parse_value VAR_NAME VALUE
|
|
parse_value() {
|
|
local val="$2"
|
|
if [[ -z $val ]]; then
|
|
err_exit "Missing value for variable $1"
|
|
exit
|
|
fi
|
|
if [[ ${val:0:2} == "--" ]]; then
|
|
err_exit "Invalid value $val passed for variable $1"
|
|
exit
|
|
fi
|
|
eval $1=\"$val\"
|
|
}
|
|
|
|
# Does simple command-line parsing and initialization.
|
|
parse_flags() {
|
|
local i=0
|
|
while test $i -lt ${#ARGV[@]}; do
|
|
local j=$((i+1))
|
|
case ${ARGV[$i]} in
|
|
--)
|
|
break;;
|
|
--fontlist)
|
|
fn=0
|
|
FONTS=""
|
|
while test $j -lt ${#ARGV[@]}; do
|
|
test -z "${ARGV[$j]}" && break
|
|
test $(echo ${ARGV[$j]} | cut -c -2) = "--" && break
|
|
FONTS[$fn]="${ARGV[$j]}"
|
|
fn=$((fn+1))
|
|
j=$((j+1))
|
|
done
|
|
i=$((j-1)) ;;
|
|
--exposures)
|
|
exp=""
|
|
while test $j -lt ${#ARGV[@]}; do
|
|
test -z "${ARGV[$j]}" && break
|
|
test $(echo ${ARGV[$j]} | cut -c -2) = "--" && break
|
|
exp="$exp ${ARGV[$j]}"
|
|
j=$((j+1))
|
|
done
|
|
parse_value "EXPOSURES" "$exp"
|
|
i=$((j-1)) ;;
|
|
--fonts_dir)
|
|
parse_value "FONTS_DIR" ${ARGV[$j]}
|
|
i=$j ;;
|
|
--lang)
|
|
parse_value "LANG_CODE" ${ARGV[$j]}
|
|
i=$j ;;
|
|
--langdata_dir)
|
|
parse_value "LANGDATA_ROOT" ${ARGV[$j]}
|
|
i=$j ;;
|
|
--output_dir)
|
|
parse_value "OUTPUT_DIR" ${ARGV[$j]}
|
|
i=$j ;;
|
|
--overwrite)
|
|
OVERWRITE=1 ;;
|
|
--linedata_only)
|
|
LINEDATA=1 ;;
|
|
--extract_font_properties)
|
|
EXTRACT_FONT_PROPERTIES=1 ;;
|
|
--noextract_font_properties)
|
|
EXTRACT_FONT_PROPERTIES=0 ;;
|
|
--tessdata_dir)
|
|
parse_value "TESSDATA_DIR" ${ARGV[$j]}
|
|
i=$j ;;
|
|
--training_text)
|
|
parse_value "TRAINING_TEXT" "${ARGV[$j]}"
|
|
i=$j ;;
|
|
--wordlist)
|
|
parse_value "WORDLIST_FILE" ${ARGV[$j]}
|
|
i=$j ;;
|
|
*)
|
|
err_exit "Unrecognized argument ${ARGV[$i]}" ;;
|
|
esac
|
|
i=$((i+1))
|
|
done
|
|
if [[ -z ${LANG_CODE} ]]; then
|
|
err_exit "Need to specify a language --lang"
|
|
fi
|
|
if [[ -z ${LANGDATA_ROOT} ]]; then
|
|
err_exit "Need to specify path to language files --langdata_dir"
|
|
fi
|
|
if [[ -z ${TESSDATA_DIR} ]]; then
|
|
if [[ -z ${TESSDATA_PREFIX} ]]; then
|
|
err_exit "Need to specify a --tessdata_dir or have a "\
|
|
"TESSDATA_PREFIX variable defined in your environment"
|
|
else
|
|
TESSDATA_DIR="${TESSDATA_PREFIX}"
|
|
fi
|
|
fi
|
|
|
|
# Location where intermediate files will be created.
|
|
TRAINING_DIR=${WORKSPACE_DIR}/${LANG_CODE}
|
|
# Location of log file for the whole run.
|
|
LOG_FILE=${TRAINING_DIR}/tesstrain.log
|
|
|
|
# Take training text and wordlist from the langdata directory if not
|
|
# specified in the command-line.
|
|
if [[ -z ${TRAINING_TEXT} ]]; then
|
|
TRAINING_TEXT=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.training_text
|
|
fi
|
|
if [[ -z ${WORDLIST_FILE} ]]; then
|
|
WORDLIST_FILE=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.wordlist
|
|
fi
|
|
WORD_BIGRAMS_FILE=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.word.bigrams
|
|
NUMBERS_FILE=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.numbers
|
|
PUNC_FILE=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.punc
|
|
BIGRAM_FREQS_FILE=${TRAINING_TEXT}.bigram_freqs
|
|
UNIGRAM_FREQS_FILE=${TRAINING_TEXT}.unigram_freqs
|
|
TRAIN_NGRAMS_FILE=${TRAINING_TEXT}.train_ngrams
|
|
GENERATE_DAWGS=1
|
|
}
|
|
|
|
# Function initializes font config with a unique font cache dir.
|
|
initialize_fontconfig() {
|
|
export FONT_CONFIG_CACHE=$(mktemp -d --tmpdir font_tmp.XXXXXXXXXX)
|
|
local sample_path=${FONT_CONFIG_CACHE}/sample_text.txt
|
|
echo "Text" >${sample_path}
|
|
run_command text2image --fonts_dir=${FONTS_DIR} \
|
|
--font="${FONTS[0]}" --outputbase=${sample_path} --text=${sample_path} \
|
|
--fontconfig_tmpdir=${FONT_CONFIG_CACHE}
|
|
}
|
|
|
|
# Helper function for phaseI_generate_image. Generates the image for a single
|
|
# language/font combination in a way that can be run in parallel.
|
|
generate_font_image() {
|
|
local font="$1"
|
|
tlog "Rendering using ${font}"
|
|
local fontname=$(echo ${font} | tr ' ' '_' | sed 's/,//g')
|
|
local outbase=${TRAINING_DIR}/${LANG_CODE}.${fontname}.exp${EXPOSURE}
|
|
|
|
local common_args="--fontconfig_tmpdir=${FONT_CONFIG_CACHE}"
|
|
common_args+=" --fonts_dir=${FONTS_DIR} --strip_unrenderable_words"
|
|
common_args+=" --leading=${LEADING}"
|
|
common_args+=" --char_spacing=${CHAR_SPACING} --exposure=${EXPOSURE}"
|
|
common_args+=" --outputbase=${outbase} --max_pages=3"
|
|
|
|
# add --writing_mode=vertical-upright to common_args if the font is
|
|
# specified to be rendered vertically.
|
|
for vfont in "${VERTICAL_FONTS[@]}"; do
|
|
if [[ "${font}" == "${vfont}" ]]; then
|
|
common_args+=" --writing_mode=vertical-upright "
|
|
break
|
|
fi
|
|
done
|
|
|
|
run_command text2image ${common_args} --font="${font}" \
|
|
--text=${TRAINING_TEXT} ${TEXT2IMAGE_EXTRA_ARGS}
|
|
check_file_readable ${outbase}.box ${outbase}.tif
|
|
|
|
if ((EXTRACT_FONT_PROPERTIES)) &&
|
|
[[ -r ${TRAIN_NGRAMS_FILE} ]]; then
|
|
tlog "Extracting font properties of ${font}"
|
|
run_command text2image ${common_args} --font="${font}" \
|
|
--ligatures=false --text=${TRAIN_NGRAMS_FILE} \
|
|
--only_extract_font_properties --ptsize=32
|
|
check_file_readable ${outbase}.fontinfo
|
|
fi
|
|
}
|
|
|
|
|
|
# Phase I : Generate (I)mages from training text for each font.
|
|
phase_I_generate_image() {
|
|
local par_factor=$1
|
|
if [[ -z ${par_factor} || ${par_factor} -le 0 ]]; then
|
|
par_factor=1
|
|
fi
|
|
tlog "\n=== Phase I: Generating training images ==="
|
|
if [[ -z ${TRAINING_TEXT} ]] || [[ ! -r ${TRAINING_TEXT} ]]; then
|
|
err_exit "Could not find training text file ${TRAINING_TEXT}"
|
|
fi
|
|
CHAR_SPACING="0.0"
|
|
|
|
for EXPOSURE in $EXPOSURES; do
|
|
if ((EXTRACT_FONT_PROPERTIES)) && [[ -r ${BIGRAM_FREQS_FILE} ]]; then
|
|
# Parse .bigram_freqs file and compose a .train_ngrams file with text
|
|
# for tesseract to recognize during training. Take only the ngrams whose
|
|
# combined weight accounts for 95% of all the bigrams in the language.
|
|
NGRAM_FRAC=$(cat ${BIGRAM_FREQS_FILE} \
|
|
| awk '{s=s+$2}; END {print (s/100)*p}' p=99)
|
|
cat ${BIGRAM_FREQS_FILE} | sort -rnk2 \
|
|
| awk '{s=s+$2; if (s <= x) {printf "%s ", $1; } }' \
|
|
x=${NGRAM_FRAC} > ${TRAIN_NGRAMS_FILE}
|
|
check_file_readable ${TRAIN_NGRAMS_FILE}
|
|
fi
|
|
|
|
local counter=0
|
|
for font in "${FONTS[@]}"; do
|
|
generate_font_image "${font}" &
|
|
let counter=counter+1
|
|
let rem=counter%par_factor
|
|
if [[ "${rem}" -eq 0 ]]; then
|
|
wait
|
|
fi
|
|
done
|
|
wait
|
|
# Check that each process was successful.
|
|
for font in "${FONTS[@]}"; do
|
|
local fontname=$(echo ${font} | tr ' ' '_' | sed 's/,//g')
|
|
local outbase=${TRAINING_DIR}/${LANG_CODE}.${fontname}.exp${EXPOSURE}
|
|
check_file_readable ${outbase}.box ${outbase}.tif
|
|
done
|
|
done
|
|
}
|
|
|
|
# Phase UP : Generate (U)nicharset and (P)roperties file.
|
|
phase_UP_generate_unicharset() {
|
|
tlog "\n=== Phase UP: Generating unicharset and unichar properties files ==="
|
|
|
|
local box_files=$(ls ${TRAINING_DIR}/*.box)
|
|
run_command unicharset_extractor -D "${TRAINING_DIR}/" ${box_files}
|
|
local outfile=${TRAINING_DIR}/unicharset
|
|
UNICHARSET_FILE="${TRAINING_DIR}/${LANG_CODE}.unicharset"
|
|
check_file_readable ${outfile}
|
|
mv ${outfile} ${UNICHARSET_FILE}
|
|
|
|
XHEIGHTS_FILE="${TRAINING_DIR}/${LANG_CODE}.xheights"
|
|
check_file_readable ${UNICHARSET_FILE}
|
|
run_command set_unicharset_properties \
|
|
-U ${UNICHARSET_FILE} -O ${UNICHARSET_FILE} -X ${XHEIGHTS_FILE} \
|
|
--script_dir=${LANGDATA_ROOT}
|
|
check_file_readable ${XHEIGHTS_FILE}
|
|
}
|
|
|
|
# Phase D : Generate (D)awg files from unicharset file and wordlist files
|
|
phase_D_generate_dawg() {
|
|
tlog "\n=== Phase D: Generating Dawg files ==="
|
|
|
|
# Skip if requested
|
|
if [[ ${GENERATE_DAWGS} -eq 0 ]]; then
|
|
tlog "Skipping ${phase_name}"
|
|
return
|
|
fi
|
|
|
|
# Output files
|
|
WORD_DAWG=${TRAINING_DIR}/${LANG_CODE}.word-dawg
|
|
FREQ_DAWG=${TRAINING_DIR}/${LANG_CODE}.freq-dawg
|
|
PUNC_DAWG=${TRAINING_DIR}/${LANG_CODE}.punc-dawg
|
|
NUMBER_DAWG=${TRAINING_DIR}/${LANG_CODE}.number-dawg
|
|
BIGRAM_DAWG=${TRAINING_DIR}/${LANG_CODE}.bigram-dawg
|
|
|
|
# Word DAWG
|
|
local freq_wordlist_file=${TRAINING_DIR}/${LANG_CODE}.wordlist.clean.freq
|
|
if [[ -s ${WORDLIST_FILE} ]]; then
|
|
tlog "Generating word Dawg"
|
|
check_file_readable ${UNICHARSET_FILE}
|
|
run_command wordlist2dawg -r 1 ${WORDLIST_FILE} ${WORD_DAWG} \
|
|
${UNICHARSET_FILE}
|
|
check_file_readable ${WORD_DAWG}
|
|
|
|
FREQ_DAWG_SIZE=100
|
|
head -n ${FREQ_DAWG_SIZE} ${WORDLIST_FILE} > ${freq_wordlist_file}
|
|
fi
|
|
|
|
# Freq-word DAWG
|
|
if [[ -s ${freq_wordlist_file} ]]; then
|
|
check_file_readable ${UNICHARSET_FILE}
|
|
tlog "Generating frequent-word Dawg"
|
|
run_command wordlist2dawg -r 1 ${freq_wordlist_file} \
|
|
${FREQ_DAWG} ${UNICHARSET_FILE}
|
|
check_file_readable ${FREQ_DAWG}
|
|
fi
|
|
|
|
# Punctuation DAWG
|
|
# -r arguments to wordlist2dawg denote RTL reverse policy
|
|
# (see Trie::RTLReversePolicy enum in third_party/tesseract/dict/trie.h).
|
|
# We specify 0/RRP_DO_NO_REVERSE when generating number DAWG,
|
|
# 1/RRP_REVERSE_IF_HAS_RTL for freq and word DAWGS,
|
|
# 2/RRP_FORCE_REVERSE for the punctuation DAWG.
|
|
local punc_reverse_policy=0;
|
|
case ${LANG_CODE} in
|
|
ara | div| fas | pus | snd | syr | uig | urd | heb | yid )
|
|
punc_reverse_policy=2 ;;
|
|
* ) ;;
|
|
esac
|
|
if [[ ! -s ${PUNC_FILE} ]]; then
|
|
PUNC_FILE="${LANGDATA_ROOT}/common.punc"
|
|
fi
|
|
check_file_readable ${PUNC_FILE}
|
|
run_command wordlist2dawg -r ${punc_reverse_policy} \
|
|
${PUNC_FILE} ${PUNC_DAWG} ${UNICHARSET_FILE}
|
|
check_file_readable ${PUNC_DAWG}
|
|
|
|
# Numbers DAWG
|
|
if [[ -s ${NUMBERS_FILE} ]]; then
|
|
run_command wordlist2dawg -r 0 \
|
|
${NUMBERS_FILE} ${NUMBER_DAWG} ${UNICHARSET_FILE}
|
|
check_file_readable ${NUMBER_DAWG}
|
|
fi
|
|
|
|
# Bigram dawg
|
|
if [[ -s ${WORD_BIGRAMS_FILE} ]]; then
|
|
run_command wordlist2dawg -r 1 \
|
|
${WORD_BIGRAMS_FILE} ${BIGRAM_DAWG} ${UNICHARSET_FILE}
|
|
check_file_readable ${BIGRAM_DAWG}
|
|
fi
|
|
}
|
|
|
|
# Phase E : (E)xtract .tr feature files from .tif/.box files
|
|
phase_E_extract_features() {
|
|
local box_config=$1
|
|
local par_factor=$2
|
|
local ext=$3
|
|
if [[ -z ${par_factor} || ${par_factor} -le 0 ]]; then
|
|
par_factor=1
|
|
fi
|
|
tlog "\n=== Phase E: Generating ${ext} files ==="
|
|
|
|
local img_files=""
|
|
for exposure in ${EXPOSURES}; do
|
|
img_files=${img_files}' '$(ls ${TRAINING_DIR}/*.exp${exposure}.tif)
|
|
done
|
|
|
|
# Use any available language-specific configs.
|
|
local config=""
|
|
if [[ -r ${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.config ]]; then
|
|
config=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.config
|
|
fi
|
|
|
|
OLD_TESSDATA_PREFIX=${TESSDATA_PREFIX}
|
|
export TESSDATA_PREFIX=${TESSDATA_DIR}
|
|
tlog "Using TESSDATA_PREFIX=${TESSDATA_PREFIX}"
|
|
local counter=0
|
|
for img_file in ${img_files}; do
|
|
run_command tesseract ${img_file} ${img_file%.*} \
|
|
${box_config} ${config} &
|
|
let counter=counter+1
|
|
let rem=counter%par_factor
|
|
if [[ "${rem}" -eq 0 ]]; then
|
|
wait
|
|
fi
|
|
done
|
|
wait
|
|
export TESSDATA_PREFIX=${OLD_TESSDATA_PREFIX}
|
|
# Check that all the output files were produced.
|
|
for img_file in ${img_files}; do
|
|
check_file_readable "${img_file%.*}.${ext}"
|
|
done
|
|
}
|
|
|
|
# Phase C : (C)luster feature prototypes in .tr into normproto file (cnTraining)
|
|
# phaseC_cluster_prototypes ${TRAINING_DIR}/${LANG_CODE}.normproto
|
|
phase_C_cluster_prototypes() {
|
|
tlog "\n=== Phase C: Clustering feature prototypes (cnTraining) ==="
|
|
local out_normproto=$1
|
|
|
|
run_command cntraining -D "${TRAINING_DIR}/" \
|
|
$(ls ${TRAINING_DIR}/*.tr)
|
|
|
|
check_file_readable ${TRAINING_DIR}/normproto
|
|
mv ${TRAINING_DIR}/normproto ${out_normproto}
|
|
}
|
|
|
|
# Phase S : (S)hape clustering
|
|
phase_S_cluster_shapes() {
|
|
if ((! RUN_SHAPE_CLUSTERING)); then
|
|
tlog "\n=== Shape Clustering disabled ==="
|
|
return
|
|
fi
|
|
check_file_readable ${LANGDATA_ROOT}/font_properties
|
|
local font_props="-F ${LANGDATA_ROOT}/font_properties"
|
|
if [[ -r ${TRAINING_DIR}/${LANG_CODE}.xheights ]] &&\
|
|
[[ -s ${TRAINING_DIR}/${LANG_CODE}.xheights ]]; then
|
|
font_props=${font_props}" -X ${TRAINING_DIR}/${LANG_CODE}.xheights"
|
|
fi
|
|
|
|
run_command shapeclustering \
|
|
-D "${TRAINING_DIR}/" \
|
|
-U ${TRAINING_DIR}/${LANG_CODE}.unicharset \
|
|
-O ${TRAINING_DIR}/${LANG_CODE}.mfunicharset \
|
|
${font_props} \
|
|
$(ls ${TRAINING_DIR}/*.tr)
|
|
check_file_readable ${TRAINING_DIR}/shapetable \
|
|
${TRAINING_DIR}/${LANG_CODE}.mfunicharset
|
|
}
|
|
|
|
# Phase M : Clustering microfeatures (mfTraining)
|
|
phase_M_cluster_microfeatures() {
|
|
tlog "\n=== Phase M : Clustering microfeatures (mfTraining) ==="
|
|
|
|
check_file_readable ${LANGDATA_ROOT}/font_properties
|
|
font_props="-F ${LANGDATA_ROOT}/font_properties"
|
|
if [[ -r ${TRAINING_DIR}/${LANG_CODE}.xheights ]] && \
|
|
[[ -s ${TRAINING_DIR}/${LANG_CODE}.xheights ]]; then
|
|
font_props=${font_props}" -X ${TRAINING_DIR}/${LANG_CODE}.xheights"
|
|
fi
|
|
|
|
run_command mftraining \
|
|
-D "${TRAINING_DIR}/" \
|
|
-U ${TRAINING_DIR}/${LANG_CODE}.unicharset \
|
|
-O ${TRAINING_DIR}/${LANG_CODE}.mfunicharset \
|
|
${font_props} \
|
|
$(ls ${TRAINING_DIR}/*.tr)
|
|
check_file_readable ${TRAINING_DIR}/inttemp ${TRAINING_DIR}/shapetable \
|
|
${TRAINING_DIR}/pffmtable ${TRAINING_DIR}/${LANG_CODE}.mfunicharset
|
|
mv ${TRAINING_DIR}/inttemp ${TRAINING_DIR}/${LANG_CODE}.inttemp
|
|
mv ${TRAINING_DIR}/shapetable ${TRAINING_DIR}/${LANG_CODE}.shapetable
|
|
mv ${TRAINING_DIR}/pffmtable ${TRAINING_DIR}/${LANG_CODE}.pffmtable
|
|
mv ${TRAINING_DIR}/${LANG_CODE}.mfunicharset ${TRAINING_DIR}/${LANG_CODE}.unicharset
|
|
}
|
|
|
|
phase_B_generate_ambiguities() {
|
|
tlog "\n=== Phase B : ambiguities training ==="
|
|
|
|
# Check for manually created ambiguities data.
|
|
if [[ -r ${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.unicharambigs ]]; then
|
|
tlog "Found file ${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.unicharambigs"
|
|
cp ${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}.unicharambigs \
|
|
${TRAINING_DIR}/${LANG_CODE}.unicharambigs
|
|
# Make it writable, as it may be read-only in the client.
|
|
chmod u+w ${TRAINING_DIR}/${LANG_CODE}.unicharambigs
|
|
return
|
|
else
|
|
tlog "No unicharambigs file found!"
|
|
fi
|
|
|
|
# TODO: Add support for generating ambiguities automatically.
|
|
}
|
|
|
|
make__lstmdata() {
|
|
tlog "\n=== Constructing LSTM training data ==="
|
|
local lang_prefix="${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}"
|
|
if [[ ! -d "${OUTPUT_DIR}" ]]; then
|
|
tlog "Creating new directory ${OUTPUT_DIR}"
|
|
mkdir -p "${OUTPUT_DIR}"
|
|
fi
|
|
local lang_is_rtl=""
|
|
# TODO(rays) set using script lang lists.
|
|
case "${LANG_CODE}" in
|
|
ara | div| fas | pus | snd | syr | uig | urd | kur_ara | heb | yid )
|
|
lang_is_rtl="--lang_is_rtl" ;;
|
|
* ) ;;
|
|
esac
|
|
local pass_through=""
|
|
# TODO(rays) set using script lang lists.
|
|
case "${LANG_CODE}" in
|
|
asm | ben | bih | hin | mar | nep | guj | kan | mal | tam | tel | pan | \
|
|
dzo | sin | san | bod | ori | khm | mya | tha | lao | heb | yid | ara | \
|
|
fas | pus | snd | urd | div | syr | uig | kur_ara )
|
|
pass_through="--pass_through_recoder" ;;
|
|
* ) ;;
|
|
esac
|
|
|
|
# Build the starter traineddata from the inputs.
|
|
run_command combine_lang_model \
|
|
--input_unicharset "${TRAINING_DIR}/${LANG_CODE}.unicharset" \
|
|
--script_dir "${LANGDATA_ROOT}" \
|
|
--words "${lang_prefix}.wordlist" \
|
|
--numbers "${lang_prefix}.numbers" \
|
|
--puncs "${lang_prefix}.punc" \
|
|
--output_dir "${OUTPUT_DIR}" --lang "${LANG_CODE}" \
|
|
"${pass_through}" "${lang_is_rtl}"
|
|
for f in "${TRAINING_DIR}/${LANG_CODE}".*.lstmf; do
|
|
tlog "Moving ${f} to ${OUTPUT_DIR}"
|
|
mv "${f}" "${OUTPUT_DIR}"
|
|
done
|
|
local lstm_list="${OUTPUT_DIR}/${LANG_CODE}.training_files.txt"
|
|
ls -1 "${OUTPUT_DIR}/${LANG_CODE}".*.lstmf > "${lstm_list}"
|
|
}
|
|
|
|
make__traineddata() {
|
|
tlog "\n=== Making final traineddata file ==="
|
|
local lang_prefix=${LANGDATA_ROOT}/${LANG_CODE}/${LANG_CODE}
|
|
|
|
# Combine available files for this language from the langdata dir.
|
|
if [[ -r ${lang_prefix}.config ]]; then
|
|
tlog "Copying ${lang_prefix}.config to ${TRAINING_DIR}"
|
|
cp ${lang_prefix}.config ${TRAINING_DIR}
|
|
chmod u+w ${TRAINING_DIR}/${LANG_CODE}.config
|
|
fi
|
|
if [[ -r ${lang_prefix}.cube-unicharset ]]; then
|
|
tlog "Copying ${lang_prefix}.cube-unicharset to ${TRAINING_DIR}"
|
|
cp ${lang_prefix}.cube-unicharset ${TRAINING_DIR}
|
|
chmod u+w ${TRAINING_DIR}/${LANG_CODE}.cube-unicharset
|
|
fi
|
|
if [[ -r ${lang_prefix}.cube-word-dawg ]]; then
|
|
tlog "Copying ${lang_prefix}.cube-word-dawg to ${TRAINING_DIR}"
|
|
cp ${lang_prefix}.cube-word-dawg ${TRAINING_DIR}
|
|
chmod u+w ${TRAINING_DIR}/${LANG_CODE}.cube-word-dawg
|
|
fi
|
|
if [[ -r ${lang_prefix}.params-model ]]; then
|
|
tlog "Copying ${lang_prefix}.params-model to ${TRAINING_DIR}"
|
|
cp ${lang_prefix}.params-model ${TRAINING_DIR}
|
|
chmod u+w ${TRAINING_DIR}/${LANG_CODE}.params-model
|
|
fi
|
|
|
|
# Compose the traineddata file.
|
|
run_command combine_tessdata ${TRAINING_DIR}/${LANG_CODE}.
|
|
|
|
# Copy it to the output dir, overwriting only if allowed by the cmdline flag.
|
|
if [[ ! -d ${OUTPUT_DIR} ]]; then
|
|
tlog "Creating new directory ${OUTPUT_DIR}"
|
|
mkdir -p ${OUTPUT_DIR}
|
|
fi
|
|
local destfile=${OUTPUT_DIR}/${LANG_CODE}.traineddata;
|
|
if [[ -f ${destfile} ]] && ((! OVERWRITE)); then
|
|
err_exit "File ${destfile} exists and no --overwrite specified";
|
|
fi
|
|
tlog "Moving ${TRAINING_DIR}/${LANG_CODE}.traineddata to ${OUTPUT_DIR}"
|
|
cp -f ${TRAINING_DIR}/${LANG_CODE}.traineddata ${destfile}
|
|
}
|
|
|