mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
3a13d80d24
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@293 d0cd1f9f-072b-0410-8dd7-cf729c803f20
1507 lines
57 KiB
C++
1507 lines
57 KiB
C++
/* -*-C-*-
|
|
********************************************************************************
|
|
*
|
|
* File: permute.c (Formerly permute.c)
|
|
* Description: Choose OCR text given character-probability maps
|
|
* for sequences of glyph fragments and a dictionary provided as
|
|
* a Dual Acyclic Word Graph.
|
|
* In this file, "permute" should be read "combine."
|
|
* Author: Mark Seaman, OCR Technology
|
|
* Created: Fri Sep 22 14:05:51 1989
|
|
* Modified: Thu Jan 3 16:38:46 1991 (Mark Seaman) marks@hpgrlt
|
|
* Language: C
|
|
* Package: N/A
|
|
* Status: Experimental (Do Not Distribute)
|
|
*
|
|
* (c) Copyright 1989, Hewlett-Packard Company.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
*********************************************************************************/
|
|
/*----------------------------------------------------------------------
|
|
I n c l u d e s
|
|
---------------------------------------------------------------------*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "const.h"
|
|
|
|
#include "permute.h"
|
|
|
|
#include "callcpp.h"
|
|
#include "context.h"
|
|
#include "conversion.h"
|
|
#include "freelist.h"
|
|
#include "globals.h"
|
|
#include "ndminx.h"
|
|
#include "permdawg.h"
|
|
#include "permngram.h"
|
|
#include "ratngs.h"
|
|
#include "stopper.h"
|
|
#include "tordvars.h"
|
|
#include "tprintf.h"
|
|
#include "trie.h"
|
|
#include "varable.h"
|
|
#include "unicharset.h"
|
|
#include "dict.h"
|
|
#include "image.h"
|
|
#include "ccutil.h"
|
|
|
|
int permutation_count; // Used in metrics.cpp.
|
|
/*----------------------------------------------------------------------
|
|
V a r i a b l e s
|
|
----------------------------------------------------------------------*/
|
|
// TODO(tkielbus) Choose a value for the MAX_NUM_EDGES constant
|
|
// (or make it dynamic)
|
|
#define MAX_NUM_EDGES 2000000
|
|
#define MAX_DOC_EDGES 250000
|
|
#define MAX_USER_EDGES 50000
|
|
/* Weights for adjustment */
|
|
#define NON_WERD 1.25
|
|
#define GARBAGE_STRING 1.5
|
|
#define MAX_PERM_LENGTH 128
|
|
|
|
// debugging flags
|
|
INT_VAR(fragments_debug, 0, "Debug character fragments");
|
|
|
|
BOOL_VAR(segment_debug, 0, "Debug the whole segmentation process");
|
|
|
|
BOOL_VAR(permute_debug, 0, "Debug char permutation process");
|
|
|
|
|
|
// control parameters
|
|
double_VAR(bestrate_pruning_factor, 2.0,
|
|
"Multiplying factor of current best rate to prune other hypotheses");
|
|
|
|
BOOL_VAR(permute_script_word, 0,
|
|
"Turn on word script consistency permuter");
|
|
|
|
BOOL_VAR(segment_segcost_rating, 0,
|
|
"incorporate segmentation cost in word rating?");
|
|
|
|
double_VAR(segment_reward_script, 0.95,
|
|
"Score multipler for script consistency within a word. "
|
|
"Being a 'reward' factor, it should be <= 1. "
|
|
"Smaller value implies bigger reward.");
|
|
|
|
double_VAR(segment_penalty_dict_nonword, NON_WERD,
|
|
"Score multiplier for glyph fragment segmentations which do not "
|
|
"match a dictionary word (lower is better).");
|
|
|
|
double_VAR(segment_penalty_garbage, GARBAGE_STRING,
|
|
"Score multiplier for poorly cased strings that are not in the "
|
|
"dictionary and generally look like garbage (lower is better).");
|
|
|
|
BOOL_VAR(save_doc_words, 0, "Save Document Words");
|
|
|
|
BOOL_VAR(doc_dict_enable, 1, "Enable Document Dictionary ");
|
|
|
|
BOOL_VAR(ngram_permuter_activated, FALSE,
|
|
"Activate character-level n-gram-based permuter");
|
|
|
|
STRING_VAR(global_user_words_suffix, "", "A list of user-provided words.");
|
|
|
|
// This is an ugly way to incorporate segmentation cost in word rating.
|
|
// See comments in incorporate_segcost.
|
|
float wordseg_rating_adjust_factor;
|
|
|
|
int permute_only_top = 0;
|
|
|
|
#define SIM_CERTAINTY_SCALE -10.0 /* Similarity matcher values */
|
|
#define SIM_CERTAINTY_OFFSET -10.0 /* Similarity matcher values */
|
|
#define SIMILARITY_FLOOR 100.0 /* Worst E*L product to stop on */
|
|
|
|
// TODO(daria): If hyphens are different in different languages and can be
|
|
// inferred from training data we should load their values dynamically.
|
|
static const char kHyphenSymbol[] = "-";
|
|
|
|
/*----------------------------------------------------------------------
|
|
F u n c t i o n s
|
|
----------------------------------------------------------------------*/
|
|
|
|
/**********************************************************************
|
|
* get_best_delete_other
|
|
*
|
|
* Returns the best of two choices and deletes the other (worse) choice.
|
|
* A choice is better if it has a non-empty string and has a lower
|
|
* rating than the other choice. If the ratings are the same,
|
|
* choice2 is preferred over choice1.
|
|
**********************************************************************/
|
|
WERD_CHOICE *get_best_delete_other(WERD_CHOICE *choice1,
|
|
WERD_CHOICE *choice2) {
|
|
if (!choice1) return choice2;
|
|
if (!choice2) return choice1;
|
|
if (choice1->rating() < choice2->rating() || choice2->length() == 0) {
|
|
delete choice2;
|
|
return choice1;
|
|
} else {
|
|
delete choice1;
|
|
return choice2;
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* good_choice
|
|
*
|
|
* Return TRUE if a good answer is found for the unknown blob rating.
|
|
**********************************************************************/
|
|
int good_choice(const WERD_CHOICE &choice) {
|
|
register float certainty;
|
|
if (tord_similarity_enable) {
|
|
if ((choice.rating() + 1) * choice.certainty() > SIMILARITY_FLOOR)
|
|
return false;
|
|
certainty =
|
|
SIM_CERTAINTY_OFFSET + choice.rating() * SIM_CERTAINTY_SCALE;
|
|
} else {
|
|
certainty = choice.certainty();
|
|
}
|
|
|
|
return (certainty > tord_certainty_threshold) ? true : false;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* add_document_word
|
|
*
|
|
* Add a word found on this document to the document specific
|
|
* dictionary.
|
|
**********************************************************************/
|
|
namespace tesseract {
|
|
void Dict::add_document_word(const WERD_CHOICE &best_choice) {
|
|
// Do not add hyphenated word parts to the document dawg.
|
|
// hyphen_word_ will be non-NULL after the set_hyphen_word() is
|
|
// called when the first part of the hyphenated word is
|
|
// discovered and while the second part of the word is recognized.
|
|
// hyphen_word_ is cleared in cc_recg() before the next word on
|
|
// the line is recognized.
|
|
if (hyphen_word_) return;
|
|
|
|
char filename[CHARS_PER_LINE];
|
|
FILE *doc_word_file;
|
|
int stringlen = best_choice.length();
|
|
|
|
if (!doc_dict_enable || valid_word(best_choice) ||
|
|
CurrentWordAmbig() || stringlen < 2)
|
|
return;
|
|
|
|
if (!good_choice(best_choice) || stringlen == 2) {
|
|
if (best_choice.certainty() < permuter_pending_threshold)
|
|
return;
|
|
|
|
if (!pending_words_->word_in_dawg(best_choice)) {
|
|
if (stringlen > 2 ||
|
|
(stringlen == 2 &&
|
|
getUnicharset().get_isupper(best_choice.unichar_id(0)) &&
|
|
getUnicharset().get_isupper(best_choice.unichar_id(1)))) {
|
|
pending_words_->add_word_to_dawg(best_choice);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (save_doc_words) {
|
|
strcpy(filename, getImage()->getCCUtil()->imagefile.string());
|
|
strcat (filename, ".doc");
|
|
doc_word_file = open_file (filename, "a");
|
|
fprintf (doc_word_file, "%s\n",
|
|
best_choice.debug_string(getUnicharset()).string());
|
|
fclose(doc_word_file);
|
|
}
|
|
document_words_->add_word_to_dawg(best_choice);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* adjust_non_word
|
|
*
|
|
* Assign an adjusted value to a string that is a non-word. The value
|
|
* that this word choice has is based on case and punctuation rules.
|
|
* The adjustment value applied is stored in adjust_factor upon return.
|
|
**********************************************************************/
|
|
void Dict::adjust_non_word(WERD_CHOICE *word, float *adjust_factor) {
|
|
float new_rating;
|
|
if (permute_debug)
|
|
cprintf("Non-word: %s %4.2f ",
|
|
word->debug_string(getUnicharset()).string(), word->rating());
|
|
|
|
new_rating = word->rating() + RATING_PAD;
|
|
if (Context::case_ok(*word, getUnicharset()) && valid_punctuation(*word)) {
|
|
new_rating *= segment_penalty_dict_nonword;
|
|
*adjust_factor = segment_penalty_dict_nonword;
|
|
if (permute_debug) tprintf(", W");
|
|
} else {
|
|
new_rating *= segment_penalty_garbage;
|
|
*adjust_factor = segment_penalty_garbage;
|
|
if (permute_debug) {
|
|
if (!Context::case_ok(*word, getUnicharset())) tprintf(", C");
|
|
if (!valid_punctuation(*word)) tprintf(", P");
|
|
}
|
|
}
|
|
new_rating -= RATING_PAD;
|
|
word->set_rating(new_rating);
|
|
if (permute_debug)
|
|
cprintf (" %4.2f --> %4.2f\n", *adjust_factor, new_rating);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* init_permute
|
|
*
|
|
* Initialize anything that needs to be set up for the permute
|
|
* functions.
|
|
**********************************************************************/
|
|
void Dict::init_permute() {
|
|
STRING name;
|
|
STRING &lang = getImage()->getCCUtil()->lang;
|
|
|
|
if (dawgs_.length() != 0) end_permute();
|
|
|
|
hyphen_unichar_id_ = getUnicharset().unichar_to_id(kHyphenSymbol);
|
|
TessdataManager &tessdata_manager =
|
|
getImage()->getCCUtil()->tessdata_manager;
|
|
|
|
// Load dawgs_.
|
|
if (global_load_punc_dawg &&
|
|
tessdata_manager.SeekToStart(TESSDATA_PUNC_DAWG)) {
|
|
dawgs_ += new SquishedDawg(tessdata_manager.GetDataFilePtr(),
|
|
DAWG_TYPE_PUNCTUATION, lang, PUNC_PERM);
|
|
}
|
|
if (global_load_system_dawg &&
|
|
tessdata_manager.SeekToStart(TESSDATA_SYSTEM_DAWG)) {
|
|
dawgs_ += new SquishedDawg(tessdata_manager.GetDataFilePtr(),
|
|
DAWG_TYPE_WORD, lang, SYSTEM_DAWG_PERM);
|
|
}
|
|
if (global_load_number_dawg &&
|
|
tessdata_manager.SeekToStart(TESSDATA_NUMBER_DAWG)) {
|
|
dawgs_ +=
|
|
new SquishedDawg(tessdata_manager.GetDataFilePtr(),
|
|
DAWG_TYPE_NUMBER, lang, NUMBER_PERM);
|
|
}
|
|
if (((STRING &)global_user_words_suffix).length() > 0) {
|
|
Trie *trie_ptr = new Trie(DAWG_TYPE_WORD, lang, USER_DAWG_PERM,
|
|
MAX_USER_EDGES, getUnicharset().size());
|
|
name = getImage()->getCCUtil()->language_data_path_prefix;
|
|
name += global_user_words_suffix;
|
|
if (!trie_ptr->read_word_list(name.string(), getUnicharset())) {
|
|
tprintf("Error: failed to load %s\n", name.string());
|
|
exit(1);
|
|
}
|
|
dawgs_ += trie_ptr;
|
|
}
|
|
document_words_ = new Trie(DAWG_TYPE_WORD, lang, DOC_DAWG_PERM,
|
|
MAX_DOC_EDGES, getUnicharset().size());
|
|
dawgs_ += document_words_;
|
|
|
|
// This dawg is temporary and should not be searched by letter_is_ok.
|
|
pending_words_ = new Trie(DAWG_TYPE_WORD, lang, NO_PERM,
|
|
MAX_DOC_EDGES, getUnicharset().size());
|
|
|
|
// The frequent words dawg is only searched when a word
|
|
// is found in any of the other dawgs.
|
|
if (tessdata_manager.SeekToStart(TESSDATA_FREQ_DAWG)) {
|
|
freq_dawg_ = new SquishedDawg(tessdata_manager.GetDataFilePtr(),
|
|
DAWG_TYPE_WORD, lang, FREQ_DAWG_PERM);
|
|
}
|
|
|
|
// Construct a list of corresponding successors for each dawg. Each entry i
|
|
// in the successors_ vector is a vector of integers that represent the
|
|
// indices into the dawgs_ vector of the successors for dawg i.
|
|
successors_.reserve(dawgs_.length());
|
|
for (int i = 0; i < dawgs_.length(); ++i) {
|
|
const Dawg *dawg = dawgs_[i];
|
|
SuccessorList *lst = new SuccessorList();
|
|
for (int j = 0; j < dawgs_.length(); ++j) {
|
|
const Dawg *other = dawgs_[j];
|
|
if (dawg->lang() == other->lang() &&
|
|
kDawgSuccessors[dawg->type()][other->type()]) *lst += j;
|
|
}
|
|
successors_ += lst;
|
|
}
|
|
}
|
|
|
|
void Dict::end_permute() {
|
|
if (dawgs_.length() == 0)
|
|
return; // Not safe to call twice.
|
|
dawgs_.delete_data_pointers();
|
|
successors_.delete_data_pointers();
|
|
dawgs_.clear();
|
|
successors_.clear();
|
|
document_words_ = NULL;
|
|
if (pending_words_ != NULL) delete pending_words_;
|
|
pending_words_ = NULL;
|
|
if (freq_dawg_ != NULL) delete freq_dawg_;
|
|
freq_dawg_ = NULL;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* permute_all
|
|
*
|
|
* Permute all the characters together using all of the different types
|
|
* of permuters/selectors available. Each of the characters must have
|
|
* a non-NULL choice list.
|
|
*
|
|
* Note: order of applying permuters does matter, since the latter
|
|
* permuter will be recorded if the resulting word ratings are the same.
|
|
**********************************************************************/
|
|
WERD_CHOICE *Dict::permute_all(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float rating_limit,
|
|
WERD_CHOICE *raw_choice) {
|
|
WERD_CHOICE *result1;
|
|
WERD_CHOICE *result2 = NULL;
|
|
BOOL8 any_alpha;
|
|
float top_choice_rating_limit = rating_limit;
|
|
|
|
// Initialize result1 from the result of permute_top_choice.
|
|
result1 = permute_top_choice(char_choices, &top_choice_rating_limit,
|
|
raw_choice, &any_alpha);
|
|
|
|
// Enforce script consistency within a word on some scripts
|
|
if (permute_script_word &&
|
|
!word_script_eq(char_choices, getUnicharset().common_sid()) &&
|
|
!word_script_eq(char_choices, getUnicharset().latin_sid())) {
|
|
result2 = permute_script_words(char_choices);
|
|
// TODO(dsl): incorporate segmentation cost into word rating.
|
|
// This should only be turned on for scripts that we have a segmentation
|
|
// cost model for, such as CJK.
|
|
if (segment_segcost_rating)
|
|
incorporate_segcost(result2);
|
|
result1 = get_best_delete_other(result1, result2);
|
|
}
|
|
|
|
// Permute character fragments if necessary.
|
|
if (result1 == NULL || result1->fragment_mark()) {
|
|
result2 = top_fragments_permute_and_select(char_choices,
|
|
top_choice_rating_limit);
|
|
result1 = get_best_delete_other(result1, result2);
|
|
}
|
|
|
|
// TODO(daria): update ngram permuter code.
|
|
if (ngram_permuter_activated) {
|
|
tprintf("Error: ngram permuter functionality is not available\n");
|
|
exit(1);
|
|
// A_CHOICE *ngram_choice =
|
|
// ngram_permute_and_select(old_char_choices, rating_limit, word_dawg_);
|
|
// return ngram_choice;
|
|
}
|
|
|
|
if (result1 == NULL)
|
|
return (NULL);
|
|
if (permute_only_top)
|
|
return result1;
|
|
|
|
result2 = dawg_permute_and_select(char_choices, rating_limit);
|
|
result1 = get_best_delete_other(result1, result2);
|
|
|
|
result2 = permute_compound_words(char_choices, rating_limit);
|
|
result1 = get_best_delete_other(result1, result2);
|
|
|
|
return (result1);
|
|
}
|
|
|
|
// Returns the top choice char id. A helper function to make code cleaner.
|
|
UNICHAR_ID get_top_choice_uid(BLOB_CHOICE_LIST *blob_list) {
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
blob_choice_it.set_to_list(blob_list);
|
|
return (blob_choice_it.data()) ? blob_choice_it.data()->unichar_id()
|
|
: INVALID_UNICHAR_ID;
|
|
}
|
|
|
|
// Return the "dominant" script ID for the word. By "dominant", the script
|
|
// must account for at least half the characters. Otherwise, it returns 0.
|
|
int get_top_word_script(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
const UNICHARSET &unicharset) {
|
|
int max_script = unicharset.get_script_table_size();
|
|
int *sid = new int[max_script];
|
|
int x;
|
|
for (x = 0; x < max_script; x++) sid[x] = 0;
|
|
for (x = 0; x < char_choices.length(); ++x) {
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
sid[blob_choice_it.data()->script_id()]++;
|
|
}
|
|
// Note that high script ID overrides lower one on a tie, thus biasing
|
|
// towards non-Common script (if sorted that way in unicharset file).
|
|
int max_sid = 0;
|
|
for (x = 1; x < max_script; x++)
|
|
if (sid[x] >= sid[max_sid]) max_sid = x;
|
|
if (sid[max_sid] < char_choices.length() / 2)
|
|
max_sid = unicharset.null_sid();
|
|
delete[] sid;
|
|
return max_sid;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* Checks whether the dominant word script, if there is one, matches
|
|
* the given target script ID.
|
|
**********************************************************************/
|
|
bool Dict::word_script_eq(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
int target_sid) {
|
|
int max_sid = get_top_word_script(char_choices, getUnicharset());
|
|
// If "Latin" is not a loaded script, then latin_sid() would return 0.
|
|
// max_sid could also be 0 if there is no dominant script.
|
|
// This is faster than
|
|
// strcmp(getUnicharset().get_script_from_script_id(max_sid), "Latin")
|
|
return (max_sid > 0 && max_sid == target_sid);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* Iterate through all the character choices (for a single blob) and
|
|
* return the first that matches the given type, which is one of 'aA0px*',
|
|
* for lower, upper, digit, punctuation, other, and 'any', respectively.
|
|
* If not match is found, a NULL is returned.
|
|
**********************************************************************/
|
|
BLOB_CHOICE* find_choice_by_type(
|
|
BLOB_CHOICE_LIST *char_choices,
|
|
char target_type,
|
|
const UNICHARSET &unicharset) {
|
|
BLOB_CHOICE_IT c_it;
|
|
c_it.set_to_list(char_choices);
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
bool found = false;
|
|
UNICHAR_ID unichar_id = c_it.data()->unichar_id();
|
|
switch (target_type) {
|
|
case '*': found = true; break;
|
|
case 'A': found = unicharset.get_isupper(unichar_id); break;
|
|
case 'a': found = unicharset.get_islower(unichar_id); break;
|
|
case '0': found = unicharset.get_isdigit(unichar_id); break;
|
|
case 'p': found = unicharset.get_ispunctuation(unichar_id); break;
|
|
case 'x': found = !unicharset.get_isupper(unichar_id) &&
|
|
!unicharset.get_islower(unichar_id) &&
|
|
!unicharset.get_isdigit(unichar_id) &&
|
|
!unicharset.get_ispunctuation(unichar_id);
|
|
break;
|
|
}
|
|
if (found) return c_it.data();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* Iterate through all the character choices (for a single blob) and
|
|
* return the first that matches the target script ID. If backup_sid
|
|
* is not 0, then a match on either the target or backup sid is allowed.
|
|
* Note that there is no preference between a target or backup sid.
|
|
* To search for another sid only if no target_sid matched, use
|
|
* secondary_sid.
|
|
* So for example, to find first Han or Common char choice, do
|
|
* find_choice_by_script(cchoice, han_sid, common_sid, 0);
|
|
* To find first Han choice, but allow Common if none is found, do
|
|
* find_choice_by_script(cchoice, han_sid, 0, common_sid);
|
|
**********************************************************************/
|
|
BLOB_CHOICE* find_choice_by_script(
|
|
BLOB_CHOICE_LIST *char_choices,
|
|
int target_sid,
|
|
int backup_sid,
|
|
int secondary_sid) {
|
|
BLOB_CHOICE_IT c_it;
|
|
c_it.set_to_list(char_choices);
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
bool found = false;
|
|
if (c_it.data()->script_id() == 0) continue;
|
|
if (c_it.data()->script_id() == target_sid) found = true;
|
|
if (backup_sid > 0 && c_it.data()->script_id() == backup_sid) found = true;
|
|
if (found) return c_it.data();
|
|
}
|
|
if (secondary_sid > 0) {
|
|
c_it.set_to_list(char_choices);
|
|
for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) {
|
|
if (c_it.data()->script_id() == 0) continue;
|
|
if (c_it.data()->script_id() == secondary_sid)
|
|
return c_it.data();
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* Incorporate segmentation cost into the word rating. This is done
|
|
* through a mutliplier wordseg_rating_adjust_factor which is determined
|
|
* in bestfirst.cpp during state evaluation. This is not the cleanest
|
|
* way to do this. It would be better to reorganize the SEARCH_STATE
|
|
* to keep track of associated states, or do the rating adjustment
|
|
* outside the permuter in evalaute_state.
|
|
**********************************************************************/
|
|
void Dict::incorporate_segcost(WERD_CHOICE *word) {
|
|
if (!word || wordseg_rating_adjust_factor <= 0) return;
|
|
|
|
float old_rating = word->rating();
|
|
float new_rating = old_rating * wordseg_rating_adjust_factor;
|
|
word->set_rating(new_rating);
|
|
if (permute_debug)
|
|
tprintf("Permute segadjust %f * %f --> %f\n",
|
|
old_rating, wordseg_rating_adjust_factor, new_rating);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* Try flipping characters in a word to get better script consistency.
|
|
* Similar to how upper/lower case checking is done in top_choice_permuter,
|
|
* this permuter tries to suggest a more script-consistent choice AND
|
|
* modifieds the rating. So it combines both the case_ok check and
|
|
* adjust_non_word functionality. However, instead of penalizing an
|
|
* inconsistent word with a > 1 multiplier, we reward the script-consistent
|
|
* choice with a < 1 multiplier.
|
|
**********************************************************************/
|
|
WERD_CHOICE* Dict::permute_script_words(
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices) {
|
|
if (char_choices.length() > MAX_WERD_LENGTH)
|
|
return NULL;
|
|
|
|
int word_sid = get_top_word_script(char_choices, getUnicharset());
|
|
if (word_sid == getUnicharset().null_sid())
|
|
return NULL;
|
|
|
|
if (permute_debug) {
|
|
tprintf("\n\nPermuteScript %s\n",
|
|
getUnicharset().get_script_from_script_id(word_sid));
|
|
print_char_choices_list("", char_choices, getUnicharset(),
|
|
permute_debug > 1);
|
|
}
|
|
|
|
WERD_CHOICE *current_word = new WERD_CHOICE(MAX_WERD_LENGTH);
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
bool replaced = false;
|
|
bool prev_is_consistent = false;
|
|
for (int x = 0; x < char_choices.length(); ++x) {
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
BLOB_CHOICE *first_choice = blob_choice_it.data();
|
|
if (!first_choice) return NULL;
|
|
UNICHAR_ID unichar_id = first_choice->unichar_id();
|
|
bool sid_consistent = (first_choice->script_id() == word_sid);
|
|
bool this_is_punct = getUnicharset().get_ispunctuation(unichar_id);
|
|
|
|
if (!sid_consistent && !this_is_punct && prev_is_consistent) {
|
|
// If the previous char is CJK, we prefer a cjk over non-cjk char
|
|
if (permute_debug) {
|
|
tprintf("Checking %s r%g\n", getUnicharset().id_to_unichar(unichar_id),
|
|
first_choice->rating());
|
|
print_ratings_list("\t", char_choices.get(x), getUnicharset());
|
|
}
|
|
// prefer a script consistent choice
|
|
BLOB_CHOICE* c_it = find_choice_by_script(char_choices.get(x),
|
|
word_sid, 0, 0);
|
|
// make this a separate check
|
|
// otherwise, prefer a punctuation
|
|
if (c_it == NULL)
|
|
c_it = find_choice_by_type(char_choices.get(x), 'p', getUnicharset());
|
|
|
|
if (c_it != NULL) {
|
|
if (permute_debug)
|
|
tprintf("Replacing %d r%g ==> %d r%g\n",
|
|
first_choice->unichar_id(), first_choice->rating(),
|
|
c_it->unichar_id(), c_it->rating());
|
|
first_choice = c_it;
|
|
replaced = true;
|
|
}
|
|
}
|
|
current_word->append_unichar_id_space_allocated(
|
|
first_choice->unichar_id(), 1,
|
|
first_choice->rating(), first_choice->certainty());
|
|
prev_is_consistent = sid_consistent;
|
|
}
|
|
if (replaced) {
|
|
// When we replace a word choice (usually top choice) with
|
|
// another for the sake of script consistency, we need to improve its
|
|
// rating so that it will replace the best choice. How much we modify
|
|
// the rating determines how strong is the script consistency constraint.
|
|
// We need a more consistent solution for all contextual constraints
|
|
// like case, punct pattern, script, etc. Right now, this does the same
|
|
// thing as adjust_non_words for case and punctuation rules.
|
|
float rating = current_word->rating();
|
|
rating *= segment_reward_script;
|
|
current_word->set_rating(rating);
|
|
}
|
|
current_word->populate_unichars(getUnicharset());
|
|
if (permute_debug && replaced)
|
|
current_word->print("<== permute_script_word **");
|
|
return current_word;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* permute_characters
|
|
*
|
|
* Permute these characters together according to each of the different
|
|
* permuters that are enabled.
|
|
**********************************************************************/
|
|
void Dict::permute_characters(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float limit,
|
|
WERD_CHOICE *best_choice,
|
|
WERD_CHOICE *raw_choice) {
|
|
float old_raw_choice_rating = raw_choice->rating();
|
|
permutation_count++; /* Global counter */
|
|
if (tord_display_ratings > 1) {
|
|
cprintf("\nchar_choices in permute_characters:\n");
|
|
print_char_choices_list("\n==> Input CharChoices", char_choices,
|
|
getUnicharset(), true);
|
|
}
|
|
|
|
if (char_choices.length() == 1 &&
|
|
get_top_choice_uid(char_choices.get(0)) == 0)
|
|
return;
|
|
WERD_CHOICE *this_choice = permute_all(char_choices, limit, raw_choice);
|
|
|
|
if (raw_choice->rating() < old_raw_choice_rating) {
|
|
// Populate unichars_ and unichar_lengths_ of raw_choice. This is
|
|
// needed for various components that still work with unichars rather
|
|
// than unichar ids (e.g. AdaptToWord).
|
|
raw_choice->populate_unichars(getUnicharset());
|
|
}
|
|
if (this_choice && this_choice->rating() < best_choice->rating()) {
|
|
*best_choice = *this_choice;
|
|
// Populate unichars_ and unichar_lengths_ of best_choice. This is
|
|
// needed for various components that still work with unichars rather
|
|
// than unichar ids (dawg, *_ok functions, various hard-coded hacks).
|
|
best_choice->populate_unichars(getUnicharset());
|
|
|
|
if (tord_display_ratings) {
|
|
cprintf("permute_characters: %s\n",
|
|
best_choice->debug_string(getUnicharset()).string());
|
|
}
|
|
}
|
|
delete this_choice;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* permute_compound_words
|
|
*
|
|
* Return the top choice for each character as the choice for the word.
|
|
**********************************************************************/
|
|
WERD_CHOICE *Dict::permute_compound_words(
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float rating_limit) {
|
|
BLOB_CHOICE *first_choice;
|
|
WERD_CHOICE *best_choice = NULL;
|
|
WERD_CHOICE current_word(MAX_WERD_LENGTH);
|
|
int first_index = 0;
|
|
int x;
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
|
|
if (char_choices.length() > MAX_WERD_LENGTH) {
|
|
WERD_CHOICE *bad_word_choice = new WERD_CHOICE();
|
|
bad_word_choice->make_bad();
|
|
return bad_word_choice;
|
|
}
|
|
|
|
UNICHAR_ID slash = getUnicharset().unichar_to_id("/");
|
|
UNICHAR_ID dash = getUnicharset().unichar_to_id("-");
|
|
for (x = 0; x < char_choices.length(); ++x) {
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
first_choice = blob_choice_it.data();
|
|
if (first_choice->unichar_id() == slash ||
|
|
first_choice->unichar_id() == dash) {
|
|
if (x > first_index) {
|
|
if (segment_debug)
|
|
cprintf ("Hyphenated word found\n");
|
|
permute_subword(char_choices, rating_limit, first_index,
|
|
x - 1, ¤t_word);
|
|
if (current_word.rating() > rating_limit)
|
|
break;
|
|
}
|
|
// Append hyphen/slash separator to current_word.
|
|
current_word.append_unichar_id_space_allocated(
|
|
first_choice->unichar_id(), 1,
|
|
first_choice->rating(), first_choice->certainty());
|
|
|
|
first_index = x + 1; // update first_index
|
|
}
|
|
}
|
|
|
|
if (first_index > 0 && first_index < x &&
|
|
current_word.rating() <= rating_limit) {
|
|
permute_subword(char_choices, rating_limit, first_index,
|
|
x - 1, ¤t_word);
|
|
best_choice = new WERD_CHOICE(current_word);
|
|
best_choice->set_permuter(COMPOUND_PERM);
|
|
}
|
|
return (best_choice);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* permute_subword
|
|
*
|
|
* Permute a part of a compound word this subword is bounded by hyphens
|
|
* and the start and end of the word. Call the standard word permute
|
|
* function on a set of choices covering only part of the original
|
|
* word. When it is done reclaim the memory that was used in the
|
|
* excercise.
|
|
**********************************************************************/
|
|
void Dict::permute_subword(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float rating_limit,
|
|
int start,
|
|
int end,
|
|
WERD_CHOICE *current_word) {
|
|
int x;
|
|
BLOB_CHOICE_LIST_VECTOR subchoices;
|
|
WERD_CHOICE *best_choice = NULL;
|
|
WERD_CHOICE raw_choice;
|
|
raw_choice.make_bad();
|
|
|
|
DisableChoiceAccum();
|
|
|
|
for (x = start; x <= end; x++) {
|
|
if (char_choices.get(x) != NULL) {
|
|
subchoices += char_choices.get(x);
|
|
}
|
|
}
|
|
|
|
if (!subchoices.empty()) {
|
|
bool old_segment_dawg_debug = segment_dawg_debug;
|
|
if (segment_debug) segment_dawg_debug.set_value(true);
|
|
best_choice = permute_all(subchoices, rating_limit, &raw_choice);
|
|
|
|
if (segment_debug) {
|
|
segment_dawg_debug.set_value(old_segment_dawg_debug);
|
|
}
|
|
if (best_choice && best_choice->length() > 0) {
|
|
*current_word += *best_choice;
|
|
} else {
|
|
current_word->set_rating(MAX_FLOAT32);
|
|
}
|
|
} else {
|
|
current_word->set_rating(MAX_FLOAT32);
|
|
}
|
|
|
|
if (best_choice)
|
|
delete best_choice;
|
|
|
|
if (segment_debug && current_word->rating() < MAX_FLOAT32) {
|
|
cprintf ("Subword permuted = %s, %5.2f, %5.2f\n\n",
|
|
current_word->debug_string(getUnicharset()).string(),
|
|
current_word->rating(), current_word->certainty());
|
|
}
|
|
|
|
EnableChoiceAccum();
|
|
}
|
|
|
|
/**********************************************************************
|
|
* permute_top_choice
|
|
*
|
|
* Return the top choice for each character as the choice for the word.
|
|
* In addition a choice is created for the best lower and upper case
|
|
* non-words. In each character position the best lower (or upper) case
|
|
* character is substituted for the best overall character.
|
|
**********************************************************************/
|
|
WERD_CHOICE *Dict::permute_top_choice(
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float* rating_limit,
|
|
WERD_CHOICE *raw_choice,
|
|
BOOL8 *any_alpha) {
|
|
BLOB_CHOICE *first_choice;
|
|
const char *first_char; //first choice
|
|
const char *second_char; //second choice
|
|
const char *third_char; //third choice
|
|
char prev_char[UNICHAR_LEN + 1]; //prev in word
|
|
const char *next_char = ""; //next in word
|
|
const char *next_next_char = ""; //after next next in word
|
|
|
|
WERD_CHOICE word(MAX_PERM_LENGTH);
|
|
word.set_permuter(TOP_CHOICE_PERM);
|
|
WERD_CHOICE capital_word(MAX_PERM_LENGTH);
|
|
capital_word.set_permuter(UPPER_CASE_PERM);
|
|
WERD_CHOICE lower_word(MAX_PERM_LENGTH);
|
|
lower_word.set_permuter(LOWER_CASE_PERM);
|
|
|
|
int x;
|
|
BOOL8 char_alpha;
|
|
float first_rating = 0;
|
|
float adjust_factor;
|
|
|
|
float certainties[MAX_PERM_LENGTH + 1];
|
|
float lower_certainties[MAX_PERM_LENGTH + 1];
|
|
float upper_certainties[MAX_PERM_LENGTH + 1];
|
|
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
UNICHAR_ID temp_id;
|
|
UNICHAR_ID unichar_id;
|
|
UNICHAR_ID space = getUnicharset().unichar_to_id(" ");
|
|
register const char* ch;
|
|
register inT8 lower_done;
|
|
register inT8 upper_done;
|
|
|
|
prev_char[0] = '\0';
|
|
|
|
if (any_alpha != NULL)
|
|
*any_alpha = FALSE;
|
|
|
|
if (char_choices.length() > MAX_PERM_LENGTH) {
|
|
return (NULL);
|
|
}
|
|
|
|
for (x = 0; x < char_choices.length(); ++x) {
|
|
if (x + 1 < char_choices.length()) {
|
|
unichar_id = get_top_choice_uid(char_choices.get(x+1));
|
|
next_char = unichar_id != INVALID_UNICHAR_ID ?
|
|
getUnicharset().id_to_unichar(unichar_id) : "";
|
|
} else {
|
|
next_char = "";
|
|
}
|
|
|
|
if (x + 2 < char_choices.length()) {
|
|
unichar_id = get_top_choice_uid(char_choices.get(x+2));
|
|
next_next_char = unichar_id != INVALID_UNICHAR_ID ?
|
|
getUnicharset().id_to_unichar(unichar_id) : "";
|
|
} else {
|
|
next_next_char = "";
|
|
}
|
|
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
ASSERT_HOST(!blob_choice_it.empty());
|
|
first_choice = NULL;
|
|
for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list();
|
|
blob_choice_it.forward()) { // find the best non-fragment char choice
|
|
temp_id = blob_choice_it.data()->unichar_id();
|
|
if (!(getUnicharset().get_fragment(temp_id))) {
|
|
first_choice = blob_choice_it.data();
|
|
break;
|
|
} else if (char_choices.length() > 1) {
|
|
word.set_fragment_mark(true);
|
|
capital_word.set_fragment_mark(true);
|
|
lower_word.set_fragment_mark(true);
|
|
}
|
|
}
|
|
if (first_choice == NULL) {
|
|
cprintf("Permuter found only fragments for"
|
|
" character at position %d; word=%s\n",
|
|
x, word.debug_string(getUnicharset()).string());
|
|
}
|
|
ASSERT_HOST(first_choice != NULL);
|
|
|
|
unichar_id = first_choice->unichar_id() != INVALID_UNICHAR_ID ?
|
|
first_choice->unichar_id() : space;
|
|
first_char = getUnicharset().id_to_unichar(unichar_id);
|
|
first_rating = first_choice->rating();
|
|
word.append_unichar_id_space_allocated(
|
|
unichar_id, 1, first_choice->rating(), first_choice->certainty());
|
|
capital_word.append_unichar_id_space_allocated(
|
|
unichar_id, 1, first_choice->rating(), first_choice->certainty());
|
|
lower_word.append_unichar_id_space_allocated(
|
|
unichar_id, 1, first_choice->rating(), first_choice->certainty());
|
|
|
|
certainties[x] = first_choice->certainty();
|
|
lower_certainties[x] = first_choice->certainty();
|
|
upper_certainties[x] = first_choice->certainty();
|
|
|
|
lower_done = FALSE;
|
|
upper_done = FALSE;
|
|
char_alpha = FALSE;
|
|
second_char = "";
|
|
third_char = "";
|
|
for (; !blob_choice_it.cycled_list(); blob_choice_it.forward()) {
|
|
unichar_id = blob_choice_it.data()->unichar_id();
|
|
if (getUnicharset().eq(unichar_id, "l") && !blob_choice_it.at_last() &&
|
|
blob_choice_it.data_relative(1)->rating() == first_rating) {
|
|
temp_id = blob_choice_it.data_relative(1)->unichar_id();
|
|
if (getUnicharset().eq(temp_id, "1") ||
|
|
getUnicharset().eq(temp_id, "I")) {
|
|
second_char = getUnicharset().id_to_unichar(temp_id);
|
|
blob_choice_it.forward();
|
|
if (!blob_choice_it.at_last() &&
|
|
blob_choice_it.data_relative(1)->rating() == first_rating) {
|
|
temp_id = blob_choice_it.data_relative(1)->unichar_id();
|
|
if (getUnicharset().eq(temp_id, "1") ||
|
|
getUnicharset().eq(temp_id, "I")) {
|
|
third_char = getUnicharset().id_to_unichar(temp_id);
|
|
blob_choice_it.forward();
|
|
}
|
|
}
|
|
ch = choose_il1 (first_char, second_char, third_char,
|
|
prev_char, next_char, next_next_char);
|
|
unichar_id = (ch != NULL && *ch != '\0') ?
|
|
getUnicharset().unichar_to_id(ch) : INVALID_UNICHAR_ID;
|
|
if (strcmp(ch, "l") != 0 &&
|
|
getUnicharset().eq(word.unichar_id(x), "l")) {
|
|
word.set_unichar_id(unichar_id, x);
|
|
lower_word.set_unichar_id(unichar_id, x);
|
|
capital_word.set_unichar_id(unichar_id, x);
|
|
}
|
|
}
|
|
}
|
|
if (unichar_id != INVALID_UNICHAR_ID) {
|
|
/* Find lower case */
|
|
if (!lower_done &&
|
|
(getUnicharset().get_islower(unichar_id) ||
|
|
(getUnicharset().get_isupper(unichar_id) && x == 0))) {
|
|
lower_word.set_unichar_id(unichar_id, x);
|
|
lower_word.set_rating(lower_word.rating() -
|
|
first_choice->rating() + blob_choice_it.data()->rating());
|
|
if (blob_choice_it.data()->certainty() < lower_word.certainty()) {
|
|
lower_word.set_certainty(blob_choice_it.data()->certainty());
|
|
}
|
|
lower_certainties[x] = blob_choice_it.data()->certainty();
|
|
lower_done = TRUE;
|
|
}
|
|
/* Find upper case */
|
|
if (!upper_done && getUnicharset().get_isupper(unichar_id)) {
|
|
capital_word.set_unichar_id(unichar_id, x);
|
|
capital_word.set_rating(capital_word.rating() -
|
|
first_choice->rating() + blob_choice_it.data()->rating());
|
|
if (blob_choice_it.data()->certainty() < capital_word.certainty()) {
|
|
capital_word.set_certainty(blob_choice_it.data()->certainty());
|
|
}
|
|
upper_certainties[x] = blob_choice_it.data()->certainty();
|
|
upper_done = TRUE;
|
|
}
|
|
if (!char_alpha) {
|
|
const CHAR_FRAGMENT *fragment =
|
|
getUnicharset().get_fragment(unichar_id);
|
|
temp_id = !fragment ? unichar_id :
|
|
getUnicharset().unichar_to_id(fragment->get_unichar());
|
|
if (getUnicharset().get_isalpha(temp_id)) {
|
|
char_alpha = TRUE;
|
|
}
|
|
}
|
|
if (lower_done && upper_done)
|
|
break;
|
|
}
|
|
}
|
|
if (char_alpha && any_alpha != NULL)
|
|
*any_alpha = TRUE;
|
|
|
|
if (word.rating() > bestrate_pruning_factor * *rating_limit) {
|
|
if (permute_debug)
|
|
tprintf("\n***** Aborting high-cost word: %g > limit %g \n",
|
|
word.rating(), bestrate_pruning_factor * *rating_limit);
|
|
return (NULL);
|
|
}
|
|
|
|
*prev_char = '\0';
|
|
temp_id = word.unichar_id(word.length()-1);
|
|
if (temp_id != INVALID_UNICHAR_ID) {
|
|
strcpy(prev_char, getUnicharset().id_to_unichar(temp_id));
|
|
}
|
|
}
|
|
|
|
if (word.rating() < raw_choice->rating()) {
|
|
*raw_choice = word;
|
|
LogNewChoice(*raw_choice, 1.0, certainties, true);
|
|
}
|
|
|
|
if (ngram_permuter_activated)
|
|
return NULL;
|
|
|
|
float rating = word.rating();
|
|
adjust_non_word(&word, &adjust_factor);
|
|
LogNewChoice(word, adjust_factor, certainties, false);
|
|
|
|
float lower_rating = lower_word.rating();
|
|
adjust_non_word(&lower_word, &adjust_factor);
|
|
LogNewChoice(lower_word, adjust_factor, lower_certainties, false);
|
|
|
|
float upper_rating = capital_word.rating();
|
|
adjust_non_word(&capital_word, &adjust_factor);
|
|
LogNewChoice(capital_word, adjust_factor, upper_certainties, false);
|
|
|
|
WERD_CHOICE *best_choice = &word;
|
|
*rating_limit = rating;
|
|
if (lower_word.rating() < best_choice->rating()) {
|
|
best_choice = &lower_word;
|
|
*rating_limit = lower_rating;
|
|
}
|
|
if (capital_word.rating() < best_choice->rating()) {
|
|
best_choice = &capital_word;
|
|
*rating_limit = upper_rating;
|
|
}
|
|
return new WERD_CHOICE(*best_choice);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* choose_il1
|
|
*
|
|
* Choose between the candidate il1 chars.
|
|
**********************************************************************/
|
|
const char* Dict::choose_il1(const char *first_char, //first choice
|
|
const char *second_char, //second choice
|
|
const char *third_char, //third choice
|
|
const char *prev_char, //prev in word
|
|
const char *next_char, //next in word
|
|
const char *next_next_char) { //after next next in word
|
|
inT32 type1; //1/I/l type of first choice
|
|
inT32 type2; //1/I/l type of second choice
|
|
inT32 type3; //1/I/l type of third choice
|
|
|
|
int first_char_length = strlen(first_char);
|
|
int prev_char_length = strlen(prev_char);
|
|
int next_char_length = strlen(next_char);
|
|
int next_next_char_length = strlen(next_next_char);
|
|
|
|
if (*first_char == 'l' && *second_char != '\0') {
|
|
if (*second_char == 'I'
|
|
&& (((prev_char_length != 0 &&
|
|
getUnicharset().get_isupper (prev_char, prev_char_length)) &&
|
|
(next_char_length == 0 ||
|
|
!getUnicharset().get_islower (next_char, next_char_length)) &&
|
|
(next_char_length == 0 ||
|
|
!getUnicharset().get_isdigit (next_char, next_char_length))) ||
|
|
((next_char_length != 0 &&
|
|
getUnicharset().get_isupper (next_char, next_char_length)) &&
|
|
(prev_char_length == 0 ||
|
|
!getUnicharset().get_islower (prev_char, prev_char_length)) &&
|
|
(prev_char_length == 0 ||
|
|
!getUnicharset().get_isdigit (prev_char, prev_char_length)))))
|
|
first_char = second_char; //override
|
|
else if (*second_char == '1' || *third_char == '1') {
|
|
if ((next_char_length != 0 &&
|
|
getUnicharset().get_isdigit (next_char, next_char_length)) ||
|
|
(prev_char_length != 0 &&
|
|
getUnicharset().get_isdigit (prev_char, prev_char_length))
|
|
|| (*next_char == 'l' &&
|
|
(next_next_char_length != 0 &&
|
|
getUnicharset().get_isdigit (next_next_char,
|
|
next_next_char_length)))) {
|
|
first_char = "1";
|
|
first_char_length = 1;
|
|
}
|
|
else if ((prev_char_length == 0 ||
|
|
!getUnicharset().get_islower (prev_char, prev_char_length)) &&
|
|
((next_char_length == 0 ||
|
|
!getUnicharset().get_islower (next_char, next_char_length)) ||
|
|
(*next_char == 's' &&
|
|
*next_next_char == 't'))) {
|
|
if (((*prev_char != '\'' && *prev_char != '`') || *next_char != '\0')
|
|
&& ((*next_char != '\'' && *next_char != '`')
|
|
|| *prev_char != '\0')) {
|
|
first_char = "1";
|
|
first_char_length = 1;
|
|
}
|
|
}
|
|
}
|
|
if (*first_char == 'l' && *next_char != '\0' &&
|
|
(prev_char_length == 0 ||
|
|
!getUnicharset().get_isalpha (prev_char, prev_char_length))) {
|
|
type1 = 2;
|
|
|
|
if (*second_char == '1')
|
|
type2 = 0;
|
|
else if (*second_char == 'I')
|
|
type2 = 1;
|
|
else if (*second_char == 'l')
|
|
type2 = 2;
|
|
else
|
|
type2 = type1;
|
|
|
|
if (*third_char == '1')
|
|
type3 = 0;
|
|
else if (*third_char == 'I')
|
|
type3 = 1;
|
|
else if (*third_char == 'l')
|
|
type3 = 2;
|
|
else
|
|
type3 = type1;
|
|
|
|
#if 0
|
|
if (bigram_counts[*next_char][type2] >
|
|
bigram_counts[*next_char][type1]) {
|
|
first_char = second_char;
|
|
type1 = type2;
|
|
}
|
|
if (bigram_counts[*next_char][type3] >
|
|
bigram_counts[*next_char][type1]) {
|
|
first_char = third_char;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
return first_char;
|
|
}
|
|
|
|
//
|
|
// Check all the DAWGs to see if this word is in any of them.
|
|
//
|
|
int Dict::valid_word(const WERD_CHOICE &word, bool numbers_ok) {
|
|
const WERD_CHOICE *word_ptr = &word;
|
|
WERD_CHOICE temp_word;
|
|
if (hyphenated()) {
|
|
copy_hyphen_info(&temp_word);
|
|
temp_word += word;
|
|
word_ptr = &temp_word;
|
|
}
|
|
if (word_ptr->length() == 0) return NO_PERM;
|
|
// Allocate vectors for holding current and updated
|
|
// active_dawgs and constraints and initialize them.
|
|
DawgInfoVector *active_dawgs = new DawgInfoVector[2];
|
|
DawgInfoVector *constraints = new DawgInfoVector[2];
|
|
init_active_dawgs(&(active_dawgs[0]));
|
|
init_constraints(&(constraints[0]));
|
|
DawgArgs dawg_args(&(active_dawgs[0]), &(constraints[0]),
|
|
&(active_dawgs[1]), &(constraints[1]), 0.0);
|
|
int last_index = word_ptr->length() - 1;
|
|
// Call leter_is_okay for each letter in the word.
|
|
for (int i = hyphen_base_size(); i <= last_index; ++i) {
|
|
if (!((this->*letter_is_okay_)(&dawg_args, i, word_ptr,
|
|
i == last_index))) break;
|
|
// Swap active_dawgs, constraints with the corresponding updated vector.
|
|
if (dawg_args.updated_active_dawgs == &(active_dawgs[1])) {
|
|
dawg_args.updated_active_dawgs = &(active_dawgs[0]);
|
|
dawg_args.updated_constraints = &(constraints[0]);
|
|
++(dawg_args.active_dawgs);
|
|
++(dawg_args.constraints);
|
|
} else {
|
|
++(dawg_args.updated_active_dawgs);
|
|
++(dawg_args.updated_constraints);
|
|
dawg_args.active_dawgs = &(active_dawgs[0]);
|
|
dawg_args.constraints = &(constraints[0]);
|
|
}
|
|
}
|
|
delete[] active_dawgs;
|
|
delete[] constraints;
|
|
if (dawg_args.permuter == SYSTEM_DAWG_PERM ||
|
|
dawg_args.permuter == DOC_DAWG_PERM ||
|
|
dawg_args.permuter == USER_DAWG_PERM ||
|
|
(numbers_ok && dawg_args.permuter == NUMBER_PERM)){
|
|
return dawg_args.permuter;
|
|
} else {
|
|
return NO_PERM;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Return true if the word contains a valid punctuation pattern.
|
|
//
|
|
// Note: Since the domains of punctuation symbols and symblos
|
|
// used in numbers are not disjoint, a valid number might contain
|
|
// an invalid punctuation pattern (e.g. .99).
|
|
//
|
|
bool Dict::valid_punctuation(const WERD_CHOICE &word) {
|
|
if (word.length() == 0) return NO_PERM;
|
|
int i;
|
|
WERD_CHOICE new_word;
|
|
int last_index = word.length() - 1;
|
|
int new_len = 0;
|
|
for (i = 0; i <= last_index; ++i) {
|
|
UNICHAR_ID unichar_id = (word.unichar_id(i));
|
|
if (getUnicharset().get_ispunctuation(unichar_id)) {
|
|
new_word.append_unichar_id(unichar_id, 1, 0.0, 0.0);
|
|
} else if (!getUnicharset().get_isalpha(unichar_id) &&
|
|
!getUnicharset().get_isdigit(unichar_id)) {
|
|
return false; // neither punc, nor alpha, nor digit
|
|
} else if ((new_len = new_word.length()) == 0 ||
|
|
new_word.unichar_id(new_len-1) != Dawg::kPatternUnicharID) {
|
|
new_word.append_unichar_id(Dawg::kPatternUnicharID, 1, 0.0, 0.0);
|
|
}
|
|
}
|
|
for (i = 0; i < dawgs_.size(); ++i) {
|
|
if (dawgs_[i]->type() == DAWG_TYPE_PUNCTUATION &&
|
|
dawgs_[i]->word_in_dawg(new_word)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* fragment_state
|
|
*
|
|
* Given the current char choice and information about previously seen
|
|
* fragments, determines whether adjacent character fragments are
|
|
* present and whether they can be concatenated.
|
|
*
|
|
* The given prev_char_frag_info contains:
|
|
* -- fragment: if not NULL contains information about immediately
|
|
* preceeding fragmented character choice
|
|
* -- num_fragments: number of fragments that have been used so far
|
|
* to construct a character
|
|
* -- certainty: certainty of the current choice or minimum
|
|
* certainty of all fragments concatenated so far
|
|
* -- rating: rating of the current choice or sum of fragment
|
|
* ratings concatenated so far
|
|
*
|
|
* The output char_frag_info is filled in as follows:
|
|
* -- character: is set to be NULL if the choice is a non-matching
|
|
* or non-ending fragment piece; is set to unichar of the given choice
|
|
* if it represents a regular character or a matching ending fragment
|
|
* -- fragment,num_fragments,certainty,rating are set as described above
|
|
*
|
|
* Returns false if a non-matching fragment is discovered, true otherwise.
|
|
**********************************************************************/
|
|
bool Dict::fragment_state_okay(UNICHAR_ID curr_unichar_id,
|
|
float curr_rating, float curr_certainty,
|
|
const CHAR_FRAGMENT_INFO *prev_char_frag_info,
|
|
const char *debug, int word_ending,
|
|
CHAR_FRAGMENT_INFO *char_frag_info) {
|
|
const CHAR_FRAGMENT *this_fragment =
|
|
getUnicharset().get_fragment(curr_unichar_id);
|
|
const CHAR_FRAGMENT *prev_fragment =
|
|
prev_char_frag_info != NULL ? prev_char_frag_info->fragment : NULL;
|
|
|
|
// Print debug info for fragments.
|
|
if (debug && (prev_fragment || this_fragment)) {
|
|
cprintf("%s check fragments: choice=%s word_ending=%d\n", debug,
|
|
getUnicharset().debug_str(curr_unichar_id).string(),
|
|
word_ending);
|
|
if (prev_fragment) {
|
|
cprintf("prev_fragment %s\n", prev_fragment->to_string().string());
|
|
}
|
|
if (this_fragment) {
|
|
cprintf("this_fragment %s\n", this_fragment->to_string().string());
|
|
}
|
|
}
|
|
|
|
char_frag_info->unichar_id = curr_unichar_id;
|
|
char_frag_info->fragment = this_fragment;
|
|
char_frag_info->rating = curr_rating;
|
|
char_frag_info->certainty = curr_certainty;
|
|
char_frag_info->num_fragments = 1;
|
|
if (prev_fragment && !this_fragment) {
|
|
if (debug) tprintf("Skip choice with incomplete fragment\n");
|
|
return false;
|
|
}
|
|
if (this_fragment) {
|
|
// We are dealing with a fragment.
|
|
char_frag_info->unichar_id = INVALID_UNICHAR_ID;
|
|
if (prev_fragment) {
|
|
if (!this_fragment->is_continuation_of(prev_fragment)) {
|
|
if (debug) tprintf("Non-matching fragment piece\n");
|
|
return false;
|
|
}
|
|
if (this_fragment->is_ending()) {
|
|
char_frag_info->unichar_id =
|
|
getUnicharset().unichar_to_id(this_fragment->get_unichar());
|
|
char_frag_info->fragment = NULL;
|
|
if (debug) {
|
|
tprintf("Built character %s from fragments\n",
|
|
getUnicharset().debug_str(
|
|
char_frag_info->unichar_id).string());
|
|
}
|
|
} else {
|
|
if (debug) tprintf("Record fragment continuation\n");
|
|
char_frag_info->fragment = this_fragment;
|
|
}
|
|
// Update certainty and rating.
|
|
char_frag_info->rating =
|
|
prev_char_frag_info->rating + curr_rating;
|
|
char_frag_info->num_fragments = prev_char_frag_info->num_fragments + 1;
|
|
char_frag_info->certainty =
|
|
MIN(curr_certainty, prev_char_frag_info->certainty);
|
|
} else {
|
|
if (this_fragment->is_beginning()) {
|
|
if (debug) cprintf("Record fragment beginning\n");
|
|
} else {
|
|
if (debug) {
|
|
tprintf("Non-starting fragment piece with no prev_fragment\n");
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (word_ending && char_frag_info->fragment) {
|
|
if (debug) tprintf("Word can not end with a fragment\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
/**********************************************************************
|
|
* top_fragments_permute_and_select
|
|
*
|
|
* Creates a copy of character choices list that contain only fragments
|
|
* and the best non-fragmented character choice.
|
|
* Permutes character in this shortened list, builds characters from
|
|
* fragments if possible and returns a better choice if found.
|
|
**********************************************************************/
|
|
WERD_CHOICE *Dict::top_fragments_permute_and_select(
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float rating_limit) {
|
|
if (char_choices.length() <= 1 ||
|
|
char_choices.length() > MAX_PERM_LENGTH) {
|
|
return NULL;
|
|
}
|
|
// See it would be possible to benefit from permuting fragments.
|
|
int x;
|
|
float min_rating = 0.0;
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
for (x = 0; x < char_choices.length(); ++x) {
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
if (blob_choice_it.data()) {
|
|
min_rating += blob_choice_it.data()->rating();
|
|
}
|
|
if (min_rating >= rating_limit) {
|
|
return NULL;
|
|
}
|
|
}
|
|
if (fragments_debug > 1) {
|
|
tprintf("A choice with fragment beats top choice\n");
|
|
tprintf("Running fragment permuter...\n");
|
|
}
|
|
|
|
// Construct a modified choices list that contains (for each position):
|
|
// the best choice, all fragments and at least one choice for
|
|
// a non-fragmented character.
|
|
BLOB_CHOICE_LIST_VECTOR frag_char_choices(char_choices.length());
|
|
for (x = 0; x < char_choices.length(); ++x) {
|
|
bool need_nonfrag_char = true;
|
|
BLOB_CHOICE_LIST *frag_choices = new BLOB_CHOICE_LIST();
|
|
BLOB_CHOICE_IT frag_choices_it;
|
|
frag_choices_it.set_to_list(frag_choices);
|
|
blob_choice_it.set_to_list(char_choices.get(x));
|
|
for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list();
|
|
blob_choice_it.forward()) {
|
|
if (getUnicharset().get_fragment(blob_choice_it.data()->unichar_id())) {
|
|
frag_choices_it.add_after_then_move(
|
|
new BLOB_CHOICE(*(blob_choice_it.data())));
|
|
} else if (need_nonfrag_char) {
|
|
frag_choices_it.add_after_then_move(
|
|
new BLOB_CHOICE(*(blob_choice_it.data())));
|
|
need_nonfrag_char = false;
|
|
}
|
|
}
|
|
frag_char_choices += frag_choices;
|
|
}
|
|
|
|
WERD_CHOICE *best_choice = new WERD_CHOICE();
|
|
best_choice->make_bad();
|
|
WERD_CHOICE word(MAX_PERM_LENGTH);
|
|
word.set_permuter(TOP_CHOICE_PERM);
|
|
float certainties[MAX_PERM_LENGTH];
|
|
this->go_deeper_fxn_ = &tesseract::Dict::go_deeper_top_fragments_fxn;
|
|
permute_choices((fragments_debug > 1) ? "fragments_debug" : NULL,
|
|
frag_char_choices, 0, NULL, &word, certainties,
|
|
&rating_limit, best_choice, NULL);
|
|
|
|
frag_char_choices.delete_data_pointers();
|
|
return best_choice;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* permute_choices
|
|
*
|
|
* Call append_choices() for each BLOB_CHOICE in BLOB_CHOICE_LIST
|
|
* with the given char_choice_index in char_choices.
|
|
**********************************************************************/
|
|
void Dict::permute_choices(
|
|
const char *debug,
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
int char_choice_index,
|
|
const CHAR_FRAGMENT_INFO *prev_char_frag_info,
|
|
WERD_CHOICE *word,
|
|
float certainties[],
|
|
float *limit,
|
|
WERD_CHOICE *best_choice,
|
|
void *more_args) {
|
|
if (debug) {
|
|
tprintf("%s permute_choices: char_choice_index=%d"
|
|
" limit=%4.2f rating=%4.2f, certainty=%4.2f word=%s\n",
|
|
debug, char_choice_index, *limit, word->rating(),
|
|
word->certainty(), word->debug_string(getUnicharset()).string());
|
|
}
|
|
if (char_choice_index < char_choices.length()) {
|
|
BLOB_CHOICE_IT blob_choice_it;
|
|
blob_choice_it.set_to_list(char_choices.get(char_choice_index));
|
|
for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list();
|
|
blob_choice_it.forward()) {
|
|
append_choices(debug, char_choices, *(blob_choice_it.data()),
|
|
char_choice_index, prev_char_frag_info, word,
|
|
certainties, limit, best_choice, more_args);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/**********************************************************************
|
|
* append_choices
|
|
*
|
|
* Check to see whether or not the next choice is worth appending to
|
|
* the word being generated. If so then keep going deeper into the word.
|
|
*
|
|
* This function assumes that Dict::go_deeper_fxn_ is set.
|
|
**********************************************************************/
|
|
void Dict::append_choices(
|
|
const char *debug,
|
|
const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
const BLOB_CHOICE &blob_choice,
|
|
int char_choice_index,
|
|
const CHAR_FRAGMENT_INFO *prev_char_frag_info,
|
|
WERD_CHOICE *word,
|
|
float certainties[],
|
|
float *limit,
|
|
WERD_CHOICE *best_choice,
|
|
void *more_args) {
|
|
int word_ending =
|
|
(char_choice_index == char_choices.length() - 1) ? true : false;
|
|
|
|
// Deal with fragments.
|
|
CHAR_FRAGMENT_INFO char_frag_info;
|
|
if (!fragment_state_okay(blob_choice.unichar_id(), blob_choice.rating(),
|
|
blob_choice.certainty(), prev_char_frag_info, debug,
|
|
word_ending, &char_frag_info)) {
|
|
return; // blob_choice must be an invalid fragment
|
|
}
|
|
// Search the next letter if this character is a fragment.
|
|
if (char_frag_info.unichar_id == INVALID_UNICHAR_ID) {
|
|
permute_choices(debug, char_choices, char_choice_index + 1,
|
|
&char_frag_info, word, certainties, limit,
|
|
best_choice, more_args);
|
|
return;
|
|
}
|
|
|
|
// Add the next unichar.
|
|
float old_rating = word->rating();
|
|
float old_certainty = word->certainty();
|
|
uinT8 old_permuter = word->permuter();
|
|
certainties[word->length()] = char_frag_info.certainty;
|
|
word->append_unichar_id_space_allocated(
|
|
char_frag_info.unichar_id, char_frag_info.num_fragments,
|
|
char_frag_info.rating, char_frag_info.certainty);
|
|
|
|
// Explore the next unichar.
|
|
(this->*go_deeper_fxn_)(debug, char_choices, char_choice_index,
|
|
&char_frag_info, word_ending, word, certainties,
|
|
limit, best_choice, more_args);
|
|
|
|
// Remove the unichar we added to explore other choices in it's place.
|
|
word->remove_last_unichar_id();
|
|
word->set_rating(old_rating);
|
|
word->set_certainty(old_certainty);
|
|
word->set_permuter(old_permuter);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* go_deeper_top_fragments_fxn
|
|
*
|
|
* If the choice being composed so far could be better
|
|
* than best_choice keep exploring choices.
|
|
**********************************************************************/
|
|
void Dict::go_deeper_top_fragments_fxn(
|
|
const char *debug, const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
int char_choice_index,
|
|
const CHAR_FRAGMENT_INFO *prev_char_frag_info,
|
|
bool word_ending, WERD_CHOICE *word, float certainties[],
|
|
float *limit, WERD_CHOICE *best_choice, void *more_args) {
|
|
if (word->rating() < *limit) {
|
|
if (word_ending) {
|
|
if (fragments_debug > 1) {
|
|
tprintf("fragments_debug new choice = %s\n",
|
|
word->debug_string(getUnicharset()).string());
|
|
}
|
|
*limit = word->rating();
|
|
|
|
float adjust_factor;
|
|
adjust_non_word(word, &adjust_factor);
|
|
LogNewChoice(*word, adjust_factor, certainties, false);
|
|
|
|
if (word->rating() < best_choice->rating()) {
|
|
*best_choice = *word;
|
|
}
|
|
} else { // search the next letter
|
|
permute_choices(debug, char_choices, char_choice_index + 1,
|
|
prev_char_frag_info, word, certainties, limit,
|
|
best_choice, more_args);
|
|
}
|
|
} else {
|
|
if (fragments_debug > 1) {
|
|
tprintf("fragments_debug pruned word (%s, rating=%4.2f, limit=%4.2f)\n",
|
|
word->debug_string(getUnicharset()).string(),
|
|
word->rating(), *limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract
|