tesseract/ccmain/ambigsrecog.cpp
theraysmith 96e8b51feb More changes to ccmain for 3.00
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@287 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2009-07-11 02:07:25 +00:00

180 lines
7.3 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: genericvector.h
// Description: Functions for producing classifications
// for the input to ambigstraining.
// Author: Daria Antonova
// Created: Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2007, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "ambigs.h"
#include "applybox.h"
#include "boxread.h"
#include "control.h"
#include "permute.h"
#include "ratngs.h"
#include "reject.h"
#include "stopper.h"
#include "tesseractclass.h"
namespace tesseract {
// Sets flags necessary for ambigs training mode.
// Opens and returns the pointer to the output file.
FILE *Tesseract::init_ambigs_training(const STRING &fname) {
permute_only_top = 1; // use only top choice permuter
tessedit_tess_adaption_mode.set_value(0); // turn off adaption
tessedit_ok_mode.set_value(0); // turn off context checking
tessedit_enable_doc_dict.set_value(0); // turn off document dictionary
save_best_choices.set_value(1); // save individual char choices
stopper_no_acceptable_choices.set_value(1); // explore all segmentations
save_raw_choices.set_value(1); // save raw choices
// Open ambigs output file.
STRING output_fname = fname;
const char *lastdot = strrchr(output_fname.string(), '.');
if (lastdot != NULL) {
output_fname[lastdot - output_fname.string()] = '\0';
}
output_fname += ".txt";
FILE *output_file;
if (!(output_file = fopen(output_fname.string(), "a+"))) {
CANTOPENFILE.error("ambigs_training", EXIT,
"Can't open box file %s\n", output_fname.string());
}
return output_file;
}
// This function takes tif/box pair of files and runs recognition on the image,
// while making sure that the word bounds that tesseract identified roughly
// match to those specified by the input box file. For each word (ngram in a
// single bounding box from the input box file) it outputs the ocred result,
// the correct label, rating and certainty.
void Tesseract::ambigs_training_segmented(const STRING &fname,
PAGE_RES *page_res,
volatile ETEXT_DESC *monitor,
FILE *output_file) {
STRING box_fname = fname;
const char *lastdot = strrchr(box_fname.string(), '.');
if (lastdot != NULL) {
box_fname[lastdot - box_fname.string()] = '\0';
}
box_fname += ".box";
FILE *box_file;
if (!(box_file = fopen(box_fname.string(), "r"))) {
CANTOPENFILE.error("ambigs_training", EXIT,
"Can't open box file %s\n", box_fname.string());
}
static PAGE_RES_IT page_res_it;
page_res_it.page_res = page_res;
page_res_it.restart_page();
int x_min, y_min, x_max, y_max;
char label[UNICHAR_LEN * 10];
// Process all the words on this page.
while (page_res_it.word() != NULL &&
read_next_box(applybox_page, box_file, label,
&x_min, &y_min, &x_max, &y_max)) {
// Init bounding box of the current word bounding box and from box file.
TBOX box = TBOX(ICOORD(x_min, y_min), ICOORD(x_max, y_max));
TBOX word_box(page_res_it.word()->word->bounding_box());
bool one_word = true;
// Check whether the bounding box of the next word overlaps with the
// current box from box file.
while (page_res_it.next_word() != NULL &&
box.x_overlap(page_res_it.next_word()->word->bounding_box())) {
word_box = word_box.bounding_union(
page_res_it.next_word()->word->bounding_box());
page_res_it.forward();
one_word = false;
}
if (!word_box.major_overlap(box)) {
if (!word_box.x_overlap(box)) {
// We must be looking at the word that belongs in the "next" bounding
// box from the box file. The ngram that was supposed to appear in
// the current box read from the box file must have been dropped by
// tesseract as noise.
tprintf("Word %s was dropped as noise.\n", label);
continue; // stay on this blob, but read next box from box file
} else {
tprintf("Error: Insufficient overlap for word box"
" and box from file for %s\n", label);
word_box.print();
box.print();
exit(1);
}
}
// Skip recognizing the ngram if tesseract is sure it's not
// one word, otherwise run one recognition pass on this word.
if (!one_word) {
tprintf("Tesseract segmented %s as multiple words\n", label);
} else {
ambigs_classify_and_output(&page_res_it, label, output_file);
}
page_res_it.forward();
}
fclose(box_file);
}
// Run classify_word_pass1() on the current word. Output tesseract's raw choice
// as a result of the classification. For words labeled with a single unichar
// also output all alternatives from blob_choices of the best choice.
void Tesseract::ambigs_classify_and_output(PAGE_RES_IT *page_res_it,
const char *label,
FILE *output_file) {
int offset;
// Classify word.
classify_word_pass1(page_res_it->word(), page_res_it->row()->row,
page_res_it->block()->block,
FALSE, NULL, NULL);
WERD_CHOICE *best_choice = page_res_it->word()->best_choice;
ASSERT_HOST(best_choice != NULL);
ASSERT_HOST(best_choice->blob_choices() != NULL);
// Compute the number of unichars in the label.
int label_num_unichars = 0;
int step = 1; // should be non-zero on the first iteration
for (offset = 0; label[offset] != '\0' && step > 0;
step = getDict().getUnicharset().step(label + offset),
offset += step, ++label_num_unichars);
if (step == 0) {
tprintf("Not outputting illegal unichar %s\n", label);
return;
}
// Output all classifier choices for the unigrams (1-1 classifications).
if (label_num_unichars == 1 && best_choice->blob_choices()->length() == 1) {
BLOB_CHOICE_LIST_C_IT outer_blob_choice_it;
outer_blob_choice_it.set_to_list(best_choice->blob_choices());
BLOB_CHOICE_IT blob_choice_it;
blob_choice_it.set_to_list(outer_blob_choice_it.data());
for (blob_choice_it.mark_cycle_pt();
!blob_choice_it.cycled_list();
blob_choice_it.forward()) {
BLOB_CHOICE *blob_choice = blob_choice_it.data();
if (blob_choice->unichar_id() != INVALID_UNICHAR_ID) {
fprintf(output_file, "%s\t%s\t%.4f\t%.4f\n",
unicharset.id_to_unichar(blob_choice->unichar_id()),
label, blob_choice->rating(), blob_choice->certainty());
}
}
}
// Output the raw choice for succesful non 1-1 classifications.
getDict().PrintAmbigAlternatives(output_file, label, label_num_unichars);
}
} // namespace tesseract