mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-18 11:28:51 +08:00
178 lines
6.7 KiB
C++
178 lines
6.7 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// File: parallel.cpp
|
|
// Description: Runs networks in parallel on the same input.
|
|
// Author: Ray Smith
|
|
// Created: Thu May 02 08:06:06 PST 2013
|
|
//
|
|
// (C) Copyright 2013, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "parallel.h"
|
|
|
|
#include <omp.h>
|
|
|
|
#include "functions.h" // For conditional undef of _OPENMP.
|
|
#include "networkscratch.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// ni_ and no_ will be set by AddToStack.
|
|
Parallel::Parallel(const STRING& name, NetworkType type) : Plumbing(name) {
|
|
type_ = type;
|
|
}
|
|
|
|
Parallel::~Parallel() {
|
|
}
|
|
|
|
// Returns the shape output from the network given an input shape (which may
|
|
// be partially unknown ie zero).
|
|
StaticShape Parallel::OutputShape(const StaticShape& input_shape) const {
|
|
StaticShape result = stack_[0]->OutputShape(input_shape);
|
|
int stack_size = stack_.size();
|
|
for (int i = 1; i < stack_size; ++i) {
|
|
StaticShape shape = stack_[i]->OutputShape(input_shape);
|
|
result.set_depth(result.depth() + shape.depth());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
// See NetworkCpp for a detailed discussion of the arguments.
|
|
void Parallel::Forward(bool debug, const NetworkIO& input,
|
|
const TransposedArray* input_transpose,
|
|
NetworkScratch* scratch, NetworkIO* output) {
|
|
bool parallel_debug = false;
|
|
// If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
|
|
// or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
|
|
if (debug && type_ != NT_PARALLEL) {
|
|
parallel_debug = true;
|
|
debug = false;
|
|
}
|
|
int stack_size = stack_.size();
|
|
if (type_ == NT_PAR_2D_LSTM) {
|
|
// Special case, run parallel in parallel.
|
|
GenericVector<NetworkScratch::IO> results;
|
|
results.init_to_size(stack_size, NetworkScratch::IO());
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
results[i].Resize(input, stack_[i]->NumOutputs(), scratch);
|
|
}
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for num_threads(stack_size)
|
|
#endif
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
stack_[i]->Forward(debug, input, NULL, scratch, results[i]);
|
|
}
|
|
// Now pack all the results (serially) into the output.
|
|
int out_offset = 0;
|
|
output->Resize(*results[0], NumOutputs());
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
out_offset = output->CopyPacking(*results[i], out_offset);
|
|
}
|
|
} else {
|
|
// Revolving intermediate result.
|
|
NetworkScratch::IO result(input, scratch);
|
|
// Source for divided replicated.
|
|
NetworkScratch::IO source_part;
|
|
TransposedArray* src_transpose = NULL;
|
|
if (IsTraining() && type_ == NT_REPLICATED) {
|
|
// Make a transposed copy of the input.
|
|
input.Transpose(&transposed_input_);
|
|
src_transpose = &transposed_input_;
|
|
}
|
|
// Run each network, putting the outputs into result.
|
|
int out_offset = 0;
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
stack_[i]->Forward(debug, input, src_transpose, scratch, result);
|
|
// All networks must have the same output width
|
|
if (i == 0) {
|
|
output->Resize(*result, NumOutputs());
|
|
} else {
|
|
ASSERT_HOST(result->Width() == output->Width());
|
|
}
|
|
out_offset = output->CopyPacking(*result, out_offset);
|
|
}
|
|
}
|
|
if (parallel_debug) {
|
|
DisplayForward(*output);
|
|
}
|
|
}
|
|
|
|
// Runs backward propagation of errors on the deltas line.
|
|
// See NetworkCpp for a detailed discussion of the arguments.
|
|
bool Parallel::Backward(bool debug, const NetworkIO& fwd_deltas,
|
|
NetworkScratch* scratch,
|
|
NetworkIO* back_deltas) {
|
|
// If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair,
|
|
// or a 2-d LSTM quad, do debug locally, and don't pass the flag on.
|
|
if (debug && type_ != NT_PARALLEL) {
|
|
DisplayBackward(fwd_deltas);
|
|
debug = false;
|
|
}
|
|
int stack_size = stack_.size();
|
|
if (type_ == NT_PAR_2D_LSTM) {
|
|
// Special case, run parallel in parallel.
|
|
GenericVector<NetworkScratch::IO> in_deltas, out_deltas;
|
|
in_deltas.init_to_size(stack_size, NetworkScratch::IO());
|
|
out_deltas.init_to_size(stack_size, NetworkScratch::IO());
|
|
// Split the forward deltas for each stack element.
|
|
int feature_offset = 0;
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
int num_features = stack_[i]->NumOutputs();
|
|
in_deltas[i].Resize(fwd_deltas, num_features, scratch);
|
|
out_deltas[i].Resize(fwd_deltas, stack_[i]->NumInputs(), scratch);
|
|
in_deltas[i]->CopyUnpacking(fwd_deltas, feature_offset, num_features);
|
|
feature_offset += num_features;
|
|
}
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for num_threads(stack_size)
|
|
#endif
|
|
for (int i = 0; i < stack_size; ++i) {
|
|
stack_[i]->Backward(debug, *in_deltas[i], scratch,
|
|
i == 0 ? back_deltas : out_deltas[i]);
|
|
}
|
|
if (needs_to_backprop_) {
|
|
for (int i = 1; i < stack_size; ++i) {
|
|
back_deltas->AddAllToFloat(*out_deltas[i]);
|
|
}
|
|
}
|
|
} else {
|
|
// Revolving partial deltas.
|
|
NetworkScratch::IO in_deltas(fwd_deltas, scratch);
|
|
// The sum of deltas from different sources, which will eventually go into
|
|
// back_deltas.
|
|
NetworkScratch::IO out_deltas;
|
|
int feature_offset = 0;
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
int num_features = stack_[i]->NumOutputs();
|
|
in_deltas->CopyUnpacking(fwd_deltas, feature_offset, num_features);
|
|
feature_offset += num_features;
|
|
if (stack_[i]->Backward(debug, *in_deltas, scratch, back_deltas)) {
|
|
if (i == 0) {
|
|
out_deltas.ResizeFloat(*back_deltas, back_deltas->NumFeatures(),
|
|
scratch);
|
|
out_deltas->CopyAll(*back_deltas);
|
|
} else if (back_deltas->NumFeatures() == out_deltas->NumFeatures()) {
|
|
// Widths are allowed to be different going back, as we may have
|
|
// input nets, so only accumulate the deltas if the widths are the
|
|
// same.
|
|
out_deltas->AddAllToFloat(*back_deltas);
|
|
}
|
|
}
|
|
}
|
|
if (needs_to_backprop_) back_deltas->CopyAll(*out_deltas);
|
|
}
|
|
if (needs_to_backprop_) back_deltas->ScaleFloatBy(1.0f / stack_size);
|
|
return needs_to_backprop_;
|
|
}
|
|
|
|
} // namespace tesseract.
|