mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-18 19:39:24 +08:00
0c9235ebc2
All of them were found and fixed by codespell. Signed-off-by: Stefan Weil <sw@weilnetz.de>
81 lines
2.9 KiB
C++
81 lines
2.9 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: static_shape.h
|
|
// Description: Defines the size of the 4-d tensor input/output from a network.
|
|
// Author: Ray Smith
|
|
// Created: Fri Oct 14 09:07:31 PST 2016
|
|
//
|
|
// (C) Copyright 2016, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
#ifndef TESSERACT_LSTM_STATIC_SHAPE_H_
|
|
#define TESSERACT_LSTM_STATIC_SHAPE_H_
|
|
|
|
#include "tprintf.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Enum describing the loss function to apply during training and/or the
|
|
// decoding method to apply at runtime.
|
|
enum LossType {
|
|
LT_NONE, // Undefined.
|
|
LT_CTC, // Softmax with standard CTC for training/decoding.
|
|
LT_SOFTMAX, // Outputs sum to 1 in fixed positions.
|
|
LT_LOGISTIC, // Logistic outputs with independent values.
|
|
};
|
|
|
|
// Simple class to hold the tensor shape that is known at network build time
|
|
// and the LossType of the loss function.
|
|
class StaticShape {
|
|
public:
|
|
StaticShape()
|
|
: batch_(0), height_(0), width_(0), depth_(0), loss_type_(LT_NONE) {}
|
|
int batch() const { return batch_; }
|
|
void set_batch(int value) { batch_ = value; }
|
|
int height() const { return height_; }
|
|
void set_height(int value) { height_ = value; }
|
|
int width() const { return width_; }
|
|
void set_width(int value) { width_ = value; }
|
|
int depth() const { return depth_; }
|
|
void set_depth(int value) { depth_ = value; }
|
|
LossType loss_type() const { return loss_type_; }
|
|
void set_loss_type(LossType value) { loss_type_ = value; }
|
|
void SetShape(int batch, int height, int width, int depth) {
|
|
batch_ = batch;
|
|
height_ = height;
|
|
width_ = width;
|
|
depth_ = depth;
|
|
}
|
|
|
|
void Print() const {
|
|
tprintf("Batch=%d, Height=%d, Width=%d, Depth=%d, loss=%d\n", batch_,
|
|
height_, width_, depth_, loss_type_);
|
|
}
|
|
|
|
private:
|
|
// Size of the 4-D tensor input/output to a network. A value of zero is
|
|
// allowed for all except depth_ and means to be determined at runtime, and
|
|
// regarded as variable.
|
|
// Number of elements in a batch, or number of frames in a video stream.
|
|
int batch_;
|
|
// Height of the image.
|
|
int height_;
|
|
// Width of the image.
|
|
int width_;
|
|
// Depth of the image. (Number of "nodes").
|
|
int depth_;
|
|
// How to train/interpret the output.
|
|
LossType loss_type_;
|
|
};
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_LSTM_STATIC_SHAPE_H_
|