mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-23 10:56:19 +08:00
257d6e8156
It is not necessary to check for null pointers after new. Simplify also two delete operations which were missing in the previous commit. Signed-off-by: Stefan Weil <sw@weilnetz.de>
355 lines
10 KiB
C++
355 lines
10 KiB
C++
/**********************************************************************
|
|
* File: charclassifier.cpp
|
|
* Description: Implementation of Convolutional-NeuralNet Character Classifier
|
|
* Author: Ahmad Abdulkader
|
|
* Created: 2007
|
|
*
|
|
* (C) Copyright 2008, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <wctype.h>
|
|
|
|
#include "char_set.h"
|
|
#include "classifier_base.h"
|
|
#include "const.h"
|
|
#include "conv_net_classifier.h"
|
|
#include "cube_utils.h"
|
|
#include "feature_base.h"
|
|
#include "feature_bmp.h"
|
|
#include "tess_lang_model.h"
|
|
|
|
namespace tesseract {
|
|
|
|
ConvNetCharClassifier::ConvNetCharClassifier(CharSet *char_set,
|
|
TuningParams *params,
|
|
FeatureBase *feat_extract)
|
|
: CharClassifier(char_set, params, feat_extract) {
|
|
char_net_ = NULL;
|
|
net_input_ = NULL;
|
|
net_output_ = NULL;
|
|
}
|
|
|
|
ConvNetCharClassifier::~ConvNetCharClassifier() {
|
|
if (char_net_ != NULL) {
|
|
delete char_net_;
|
|
char_net_ = NULL;
|
|
}
|
|
|
|
if (net_input_ != NULL) {
|
|
delete []net_input_;
|
|
net_input_ = NULL;
|
|
}
|
|
|
|
if (net_output_ != NULL) {
|
|
delete []net_output_;
|
|
net_output_ = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The main training function. Given a sample and a class ID the classifier
|
|
* updates its parameters according to its learning algorithm. This function
|
|
* is currently not implemented. TODO(ahmadab): implement end-2-end training
|
|
*/
|
|
bool ConvNetCharClassifier::Train(CharSamp *char_samp, int ClassID) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* A secondary function needed for training. Allows the trainer to set the
|
|
* value of any train-time parameter. This function is currently not
|
|
* implemented. TODO(ahmadab): implement end-2-end training
|
|
*/
|
|
bool ConvNetCharClassifier::SetLearnParam(char *var_name, float val) {
|
|
// TODO(ahmadab): implementation of parameter initializing.
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Folds the output of the NeuralNet using the loaded folding sets
|
|
*/
|
|
void ConvNetCharClassifier::Fold() {
|
|
// in case insensitive mode
|
|
if (case_sensitive_ == false) {
|
|
int class_cnt = char_set_->ClassCount();
|
|
// fold case
|
|
for (int class_id = 0; class_id < class_cnt; class_id++) {
|
|
// get class string
|
|
const char_32 *str32 = char_set_->ClassString(class_id);
|
|
// get the upper case form of the string
|
|
string_32 upper_form32 = str32;
|
|
for (int ch = 0; ch < upper_form32.length(); ch++) {
|
|
if (iswalpha(static_cast<int>(upper_form32[ch])) != 0) {
|
|
upper_form32[ch] = towupper(upper_form32[ch]);
|
|
}
|
|
}
|
|
|
|
// find out the upperform class-id if any
|
|
int upper_class_id =
|
|
char_set_->ClassID(reinterpret_cast<const char_32 *>(
|
|
upper_form32.c_str()));
|
|
if (upper_class_id != -1 && class_id != upper_class_id) {
|
|
float max_out = MAX(net_output_[class_id], net_output_[upper_class_id]);
|
|
net_output_[class_id] = max_out;
|
|
net_output_[upper_class_id] = max_out;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The folding sets specify how groups of classes should be folded
|
|
// Folding involved assigning a min-activation to all the members
|
|
// of the folding set. The min-activation is a fraction of the max-activation
|
|
// of the members of the folding set
|
|
for (int fold_set = 0; fold_set < fold_set_cnt_; fold_set++) {
|
|
if (fold_set_len_[fold_set] == 0)
|
|
continue;
|
|
float max_prob = net_output_[fold_sets_[fold_set][0]];
|
|
for (int ch = 1; ch < fold_set_len_[fold_set]; ch++) {
|
|
if (net_output_[fold_sets_[fold_set][ch]] > max_prob) {
|
|
max_prob = net_output_[fold_sets_[fold_set][ch]];
|
|
}
|
|
}
|
|
for (int ch = 0; ch < fold_set_len_[fold_set]; ch++) {
|
|
net_output_[fold_sets_[fold_set][ch]] = MAX(max_prob * kFoldingRatio,
|
|
net_output_[fold_sets_[fold_set][ch]]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the features of specified charsamp and feedforward the
|
|
* specified nets
|
|
*/
|
|
bool ConvNetCharClassifier::RunNets(CharSamp *char_samp) {
|
|
if (char_net_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
|
|
"NeuralNet is NULL\n");
|
|
return false;
|
|
}
|
|
int feat_cnt = char_net_->in_cnt();
|
|
int class_cnt = char_set_->ClassCount();
|
|
|
|
// allocate i/p and o/p buffers if needed
|
|
if (net_input_ == NULL) {
|
|
net_input_ = new float[feat_cnt];
|
|
net_output_ = new float[class_cnt];
|
|
}
|
|
|
|
// compute input features
|
|
if (feat_extract_->ComputeFeatures(char_samp, net_input_) == false) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
|
|
"unable to compute features\n");
|
|
return false;
|
|
}
|
|
|
|
if (char_net_ != NULL) {
|
|
if (char_net_->FeedForward(net_input_, net_output_) == false) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
|
|
"unable to run feed-forward\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
Fold();
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* return the cost of being a char
|
|
*/
|
|
int ConvNetCharClassifier::CharCost(CharSamp *char_samp) {
|
|
if (RunNets(char_samp) == false) {
|
|
return 0;
|
|
}
|
|
return CubeUtils::Prob2Cost(1.0f - net_output_[0]);
|
|
}
|
|
|
|
/**
|
|
* classifies a charsamp and returns an alternate list
|
|
* of chars sorted by char costs
|
|
*/
|
|
CharAltList *ConvNetCharClassifier::Classify(CharSamp *char_samp) {
|
|
// run the needed nets
|
|
if (RunNets(char_samp) == false) {
|
|
return NULL;
|
|
}
|
|
|
|
int class_cnt = char_set_->ClassCount();
|
|
|
|
// create an altlist
|
|
CharAltList *alt_list = new CharAltList(char_set_, class_cnt);
|
|
|
|
for (int out = 1; out < class_cnt; out++) {
|
|
int cost = CubeUtils::Prob2Cost(net_output_[out]);
|
|
alt_list->Insert(out, cost);
|
|
}
|
|
|
|
return alt_list;
|
|
}
|
|
|
|
/**
|
|
* Set an external net (for training purposes)
|
|
*/
|
|
void ConvNetCharClassifier::SetNet(tesseract::NeuralNet *char_net) {
|
|
if (char_net_ != NULL) {
|
|
delete char_net_;
|
|
char_net_ = NULL;
|
|
}
|
|
char_net_ = char_net;
|
|
}
|
|
|
|
/**
|
|
* This function will return true if the file does not exist.
|
|
* But will fail if the it did not pass the sanity checks
|
|
*/
|
|
bool ConvNetCharClassifier::LoadFoldingSets(const string &data_file_path,
|
|
const string &lang,
|
|
LangModel *lang_mod) {
|
|
fold_set_cnt_ = 0;
|
|
string fold_file_name;
|
|
fold_file_name = data_file_path + lang;
|
|
fold_file_name += ".cube.fold";
|
|
|
|
// folding sets are optional
|
|
FILE *fp = fopen(fold_file_name.c_str(), "rb");
|
|
if (fp == NULL) {
|
|
return true;
|
|
}
|
|
fclose(fp);
|
|
|
|
string fold_sets_str;
|
|
if (!CubeUtils::ReadFileToString(fold_file_name,
|
|
&fold_sets_str)) {
|
|
return false;
|
|
}
|
|
|
|
// split into lines
|
|
vector<string> str_vec;
|
|
CubeUtils::SplitStringUsing(fold_sets_str, "\r\n", &str_vec);
|
|
fold_set_cnt_ = str_vec.size();
|
|
|
|
fold_sets_ = new int *[fold_set_cnt_];
|
|
fold_set_len_ = new int[fold_set_cnt_];
|
|
|
|
for (int fold_set = 0; fold_set < fold_set_cnt_; fold_set++) {
|
|
reinterpret_cast<TessLangModel *>(lang_mod)->RemoveInvalidCharacters(
|
|
&str_vec[fold_set]);
|
|
|
|
// if all or all but one character are invalid, invalidate this set
|
|
if (str_vec[fold_set].length() <= 1) {
|
|
fprintf(stderr, "Cube WARNING (ConvNetCharClassifier::LoadFoldingSets): "
|
|
"invalidating folding set %d\n", fold_set);
|
|
fold_set_len_[fold_set] = 0;
|
|
fold_sets_[fold_set] = NULL;
|
|
continue;
|
|
}
|
|
|
|
string_32 str32;
|
|
CubeUtils::UTF8ToUTF32(str_vec[fold_set].c_str(), &str32);
|
|
fold_set_len_[fold_set] = str32.length();
|
|
fold_sets_[fold_set] = new int[fold_set_len_[fold_set]];
|
|
for (int ch = 0; ch < fold_set_len_[fold_set]; ch++) {
|
|
fold_sets_[fold_set][ch] = char_set_->ClassID(str32[ch]);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Init the classifier provided a data-path and a language string
|
|
*/
|
|
bool ConvNetCharClassifier::Init(const string &data_file_path,
|
|
const string &lang,
|
|
LangModel *lang_mod) {
|
|
if (init_) {
|
|
return true;
|
|
}
|
|
|
|
// load the nets if any. This function will return true if the net file
|
|
// does not exist. But will fail if the net did not pass the sanity checks
|
|
if (!LoadNets(data_file_path, lang)) {
|
|
return false;
|
|
}
|
|
|
|
// load the folding sets if any. This function will return true if the
|
|
// file does not exist. But will fail if the it did not pass the sanity checks
|
|
if (!LoadFoldingSets(data_file_path, lang, lang_mod)) {
|
|
return false;
|
|
}
|
|
|
|
init_ = true;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Load the classifier's Neural Nets
|
|
* This function will return true if the net file does not exist.
|
|
* But will fail if the net did not pass the sanity checks
|
|
*/
|
|
bool ConvNetCharClassifier::LoadNets(const string &data_file_path,
|
|
const string &lang) {
|
|
string char_net_file;
|
|
|
|
// add the lang identifier
|
|
char_net_file = data_file_path + lang;
|
|
char_net_file += ".cube.nn";
|
|
|
|
// neural network is optional
|
|
FILE *fp = fopen(char_net_file.c_str(), "rb");
|
|
if (fp == NULL) {
|
|
return true;
|
|
}
|
|
fclose(fp);
|
|
|
|
// load main net
|
|
char_net_ = tesseract::NeuralNet::FromFile(char_net_file);
|
|
if (char_net_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
|
|
"could not load %s\n", char_net_file.c_str());
|
|
return false;
|
|
}
|
|
|
|
// validate net
|
|
if (char_net_->in_cnt()!= feat_extract_->FeatureCnt()) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
|
|
"could not validate net %s\n", char_net_file.c_str());
|
|
return false;
|
|
}
|
|
|
|
// alloc net i/o buffers
|
|
int feat_cnt = char_net_->in_cnt();
|
|
int class_cnt = char_set_->ClassCount();
|
|
|
|
if (char_net_->out_cnt() != class_cnt) {
|
|
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::LoadNets): "
|
|
"output count (%d) and class count (%d) are not equal\n",
|
|
char_net_->out_cnt(), class_cnt);
|
|
return false;
|
|
}
|
|
|
|
// allocate i/p and o/p buffers if needed
|
|
if (net_input_ == NULL) {
|
|
net_input_ = new float[feat_cnt];
|
|
net_output_ = new float[class_cnt];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
} // tesseract
|