mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-24 19:19:05 +08:00
dbf6197471
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@1147 d0cd1f9f-072b-0410-8dd7-cf729c803f20
318 lines
11 KiB
C++
318 lines
11 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: thresholder.cpp
|
|
// Description: Base API for thresolding images in tesseract.
|
|
// Author: Ray Smith
|
|
// Created: Mon May 12 11:28:15 PDT 2008
|
|
//
|
|
// (C) Copyright 2008, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "allheaders.h"
|
|
|
|
#include "thresholder.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "otsuthr.h"
|
|
|
|
#include "openclwrapper.h"
|
|
|
|
namespace tesseract {
|
|
|
|
ImageThresholder::ImageThresholder()
|
|
: pix_(NULL),
|
|
image_width_(0), image_height_(0),
|
|
pix_channels_(0), pix_wpl_(0),
|
|
scale_(1), yres_(300), estimated_res_(300) {
|
|
SetRectangle(0, 0, 0, 0);
|
|
}
|
|
|
|
ImageThresholder::~ImageThresholder() {
|
|
Clear();
|
|
}
|
|
|
|
// Destroy the Pix if there is one, freeing memory.
|
|
void ImageThresholder::Clear() {
|
|
pixDestroy(&pix_);
|
|
}
|
|
|
|
// Return true if no image has been set.
|
|
bool ImageThresholder::IsEmpty() const {
|
|
return pix_ == NULL;
|
|
}
|
|
|
|
// SetImage makes a copy of all the image data, so it may be deleted
|
|
// immediately after this call.
|
|
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
|
|
// Palette color images will not work properly and must be converted to
|
|
// 24 bit.
|
|
// Binary images of 1 bit per pixel may also be given but they must be
|
|
// byte packed with the MSB of the first byte being the first pixel, and a
|
|
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
|
|
void ImageThresholder::SetImage(const unsigned char* imagedata,
|
|
int width, int height,
|
|
int bytes_per_pixel, int bytes_per_line) {
|
|
int bpp = bytes_per_pixel * 8;
|
|
if (bpp == 0) bpp = 1;
|
|
Pix* pix = pixCreate(width, height, bpp == 24 ? 32 : bpp);
|
|
l_uint32* data = pixGetData(pix);
|
|
int wpl = pixGetWpl(pix);
|
|
switch (bpp) {
|
|
case 1:
|
|
for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) {
|
|
for (int x = 0; x < width; ++x) {
|
|
if (imagedata[x / 8] & (0x80 >> (x % 8)))
|
|
CLEAR_DATA_BIT(data, x);
|
|
else
|
|
SET_DATA_BIT(data, x);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 8:
|
|
// Greyscale just copies the bytes in the right order.
|
|
for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) {
|
|
for (int x = 0; x < width; ++x)
|
|
SET_DATA_BYTE(data, x, imagedata[x]);
|
|
}
|
|
break;
|
|
|
|
case 24:
|
|
// Put the colors in the correct places in the line buffer.
|
|
for (int y = 0; y < height; ++y, imagedata += bytes_per_line) {
|
|
for (int x = 0; x < width; ++x, ++data) {
|
|
SET_DATA_BYTE(data, COLOR_RED, imagedata[3 * x]);
|
|
SET_DATA_BYTE(data, COLOR_GREEN, imagedata[3 * x + 1]);
|
|
SET_DATA_BYTE(data, COLOR_BLUE, imagedata[3 * x + 2]);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 32:
|
|
// Maintain byte order consistency across different endianness.
|
|
for (int y = 0; y < height; ++y, imagedata += bytes_per_line, data += wpl) {
|
|
for (int x = 0; x < width; ++x) {
|
|
data[x] = (imagedata[x * 4] << 24) | (imagedata[x * 4 + 1] << 16) |
|
|
(imagedata[x * 4 + 2] << 8) | imagedata[x * 4 + 3];
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
tprintf("Cannot convert RAW image to Pix with bpp = %d\n", bpp);
|
|
}
|
|
pixSetYRes(pix, 300);
|
|
SetImage(pix);
|
|
pixDestroy(&pix);
|
|
}
|
|
|
|
// Store the coordinates of the rectangle to process for later use.
|
|
// Doesn't actually do any thresholding.
|
|
void ImageThresholder::SetRectangle(int left, int top, int width, int height) {
|
|
rect_left_ = left;
|
|
rect_top_ = top;
|
|
rect_width_ = width;
|
|
rect_height_ = height;
|
|
}
|
|
|
|
// Get enough parameters to be able to rebuild bounding boxes in the
|
|
// original image (not just within the rectangle).
|
|
// Left and top are enough with top-down coordinates, but
|
|
// the height of the rectangle and the image are needed for bottom-up.
|
|
void ImageThresholder::GetImageSizes(int* left, int* top,
|
|
int* width, int* height,
|
|
int* imagewidth, int* imageheight) {
|
|
*left = rect_left_;
|
|
*top = rect_top_;
|
|
*width = rect_width_;
|
|
*height = rect_height_;
|
|
*imagewidth = image_width_;
|
|
*imageheight = image_height_;
|
|
}
|
|
|
|
// Pix vs raw, which to use? Pix is the preferred input for efficiency,
|
|
// since raw buffers are copied.
|
|
// SetImage for Pix clones its input, so the source pix may be pixDestroyed
|
|
// immediately after, but may not go away until after the Thresholder has
|
|
// finished with it.
|
|
void ImageThresholder::SetImage(const Pix* pix) {
|
|
if (pix_ != NULL)
|
|
pixDestroy(&pix_);
|
|
Pix* src = const_cast<Pix*>(pix);
|
|
int depth;
|
|
pixGetDimensions(src, &image_width_, &image_height_, &depth);
|
|
// Convert the image as necessary so it is one of binary, plain RGB, or
|
|
// 8 bit with no colormap.
|
|
if (depth > 1 && depth < 8) {
|
|
pix_ = pixConvertTo8(src, false);
|
|
} else if (pixGetColormap(src)) {
|
|
pix_ = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC);
|
|
} else {
|
|
pix_ = pixClone(src);
|
|
}
|
|
depth = pixGetDepth(pix_);
|
|
pix_channels_ = depth / 8;
|
|
pix_wpl_ = pixGetWpl(pix_);
|
|
scale_ = 1;
|
|
estimated_res_ = yres_ = pixGetYRes(src);
|
|
Init();
|
|
}
|
|
|
|
// Threshold the source image as efficiently as possible to the output Pix.
|
|
// Creates a Pix and sets pix to point to the resulting pointer.
|
|
// Caller must use pixDestroy to free the created Pix.
|
|
void ImageThresholder::ThresholdToPix(PageSegMode pageseg_mode, Pix** pix) {
|
|
if (pix_channels_ == 0) {
|
|
// We have a binary image, so it just has to be cloned.
|
|
*pix = GetPixRect();
|
|
} else {
|
|
OtsuThresholdRectToPix(pix_, pix);
|
|
}
|
|
}
|
|
|
|
// Gets a pix that contains an 8 bit threshold value at each pixel. The
|
|
// returned pix may be an integer reduction of the binary image such that
|
|
// the scale factor may be inferred from the ratio of the sizes, even down
|
|
// to the extreme of a 1x1 pixel thresholds image.
|
|
// Ideally the 8 bit threshold should be the exact threshold used to generate
|
|
// the binary image in ThresholdToPix, but this is not a hard constraint.
|
|
// Returns NULL if the input is binary. PixDestroy after use.
|
|
Pix* ImageThresholder::GetPixRectThresholds() {
|
|
if (IsBinary()) return NULL;
|
|
Pix* pix_grey = GetPixRectGrey();
|
|
int width = pixGetWidth(pix_grey);
|
|
int height = pixGetHeight(pix_grey);
|
|
int* thresholds;
|
|
int* hi_values;
|
|
OtsuThreshold(pix_grey, 0, 0, width, height, &thresholds, &hi_values);
|
|
pixDestroy(&pix_grey);
|
|
Pix* pix_thresholds = pixCreate(width, height, 8);
|
|
int threshold = thresholds[0] > 0 ? thresholds[0] : 128;
|
|
pixSetAllArbitrary(pix_thresholds, threshold);
|
|
delete [] thresholds;
|
|
delete [] hi_values;
|
|
return pix_thresholds;
|
|
}
|
|
|
|
// Common initialization shared between SetImage methods.
|
|
void ImageThresholder::Init() {
|
|
SetRectangle(0, 0, image_width_, image_height_);
|
|
}
|
|
|
|
// Get a clone/copy of the source image rectangle.
|
|
// The returned Pix must be pixDestroyed.
|
|
// This function will be used in the future by the page layout analysis, and
|
|
// the layout analysis that uses it will only be available with Leptonica,
|
|
// so there is no raw equivalent.
|
|
Pix* ImageThresholder::GetPixRect() {
|
|
if (IsFullImage()) {
|
|
// Just clone the whole thing.
|
|
return pixClone(pix_);
|
|
} else {
|
|
// Crop to the given rectangle.
|
|
Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_);
|
|
Pix* cropped = pixClipRectangle(pix_, box, NULL);
|
|
boxDestroy(&box);
|
|
return cropped;
|
|
}
|
|
}
|
|
|
|
// Get a clone/copy of the source image rectangle, reduced to greyscale,
|
|
// and at the same resolution as the output binary.
|
|
// The returned Pix must be pixDestroyed.
|
|
// Provided to the classifier to extract features from the greyscale image.
|
|
Pix* ImageThresholder::GetPixRectGrey() {
|
|
Pix* pix = GetPixRect(); // May have to be reduced to grey.
|
|
int depth = pixGetDepth(pix);
|
|
if (depth != 8) {
|
|
Pix* result = depth < 8 ? pixConvertTo8(pix, false)
|
|
: pixConvertRGBToLuminance(pix);
|
|
pixDestroy(&pix);
|
|
return result;
|
|
}
|
|
return pix;
|
|
}
|
|
|
|
// Otsu thresholds the rectangle, taking the rectangle from *this.
|
|
void ImageThresholder::OtsuThresholdRectToPix(Pix* src_pix,
|
|
Pix** out_pix) const {
|
|
PERF_COUNT_START("OtsuThresholdRectToPix")
|
|
int* thresholds;
|
|
int* hi_values;
|
|
|
|
int num_channels = OtsuThreshold(src_pix, rect_left_, rect_top_, rect_width_,
|
|
rect_height_, &thresholds, &hi_values);
|
|
// only use opencl if compiled w/ OpenCL and selected device is opencl
|
|
#ifdef USE_OPENCL
|
|
OpenclDevice od;
|
|
if ((num_channels == 4 || num_channels == 1) &&
|
|
od.selectedDeviceIsOpenCL() && rect_top_ == 0 && rect_left_ == 0 ) {
|
|
od.ThresholdRectToPixOCL((const unsigned char*)pixGetData(src_pix),
|
|
num_channels, pixGetWpl(src_pix) * 4,
|
|
thresholds, hi_values, out_pix /*pix_OCL*/,
|
|
rect_height_, rect_width_, rect_top_, rect_left_);
|
|
} else {
|
|
#endif
|
|
ThresholdRectToPix(src_pix, num_channels, thresholds, hi_values, out_pix);
|
|
#ifdef USE_OPENCL
|
|
}
|
|
#endif
|
|
delete [] thresholds;
|
|
delete [] hi_values;
|
|
|
|
PERF_COUNT_END
|
|
}
|
|
|
|
/// Threshold the rectangle, taking everything except the src_pix
|
|
/// from the class, using thresholds/hi_values to the output pix.
|
|
/// NOTE that num_channels is the size of the thresholds and hi_values
|
|
// arrays and also the bytes per pixel in src_pix.
|
|
void ImageThresholder::ThresholdRectToPix(Pix* src_pix,
|
|
int num_channels,
|
|
const int* thresholds,
|
|
const int* hi_values,
|
|
Pix** pix) const {
|
|
PERF_COUNT_START("ThresholdRectToPix")
|
|
*pix = pixCreate(rect_width_, rect_height_, 1);
|
|
uinT32* pixdata = pixGetData(*pix);
|
|
int wpl = pixGetWpl(*pix);
|
|
int src_wpl = pixGetWpl(src_pix);
|
|
uinT32* srcdata = pixGetData(src_pix);
|
|
for (int y = 0; y < rect_height_; ++y) {
|
|
const uinT32* linedata = srcdata + (y + rect_top_) * src_wpl;
|
|
uinT32* pixline = pixdata + y * wpl;
|
|
for (int x = 0; x < rect_width_; ++x) {
|
|
bool white_result = true;
|
|
for (int ch = 0; ch < num_channels; ++ch) {
|
|
int pixel = GET_DATA_BYTE(const_cast<void*>(
|
|
reinterpret_cast<const void *>(linedata)),
|
|
(x + rect_left_) * num_channels + ch);
|
|
if (hi_values[ch] >= 0 &&
|
|
(pixel > thresholds[ch]) == (hi_values[ch] == 0)) {
|
|
white_result = false;
|
|
break;
|
|
}
|
|
}
|
|
if (white_result)
|
|
CLEAR_DATA_BIT(pixline, x);
|
|
else
|
|
SET_DATA_BIT(pixline, x);
|
|
}
|
|
}
|
|
|
|
PERF_COUNT_END
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|