mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
2aafc9df24
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@872 d0cd1f9f-072b-0410-8dd7-cf729c803f20
611 lines
23 KiB
C++
611 lines
23 KiB
C++
/******************************************************************
|
|
* File: superscript.cpp
|
|
* Description: Correction pass to fix superscripts and subscripts.
|
|
* Author: David Eger
|
|
* Created: Mon Mar 12 14:05:00 PDT 2012
|
|
*
|
|
* (C) Copyright 2012, Google, Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "normalis.h"
|
|
#include "tesseractclass.h"
|
|
|
|
static int LeadingUnicharsToChopped(WERD_RES *word, int num_unichars) {
|
|
int num_chopped = 0;
|
|
for (int i = 0; i < num_unichars; i++)
|
|
num_chopped += word->best_state[i];
|
|
return num_chopped;
|
|
}
|
|
|
|
static int TrailingUnicharsToChopped(WERD_RES *word, int num_unichars) {
|
|
int num_chopped = 0;
|
|
for (int i = 0; i < num_unichars; i++)
|
|
num_chopped += word->best_state[word->best_state.size() - 1 - i];
|
|
return num_chopped;
|
|
}
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
/**
|
|
* Given a recognized blob, see if a contiguous collection of sub-pieces
|
|
* (chopped blobs) starting at its left might qualify as being a subscript
|
|
* or superscript letter based only on y position. Also do this for the
|
|
* right side.
|
|
*/
|
|
void YOutlierPieces(WERD_RES *word, int rebuilt_blob_index,
|
|
int super_y_bottom, int sub_y_top,
|
|
ScriptPos *leading_pos, int *num_leading_outliers,
|
|
ScriptPos *trailing_pos, int *num_trailing_outliers) {
|
|
ScriptPos sp_unused1, sp_unused2;
|
|
int unused1, unused2;
|
|
if (!leading_pos) leading_pos = &sp_unused1;
|
|
if (!num_leading_outliers) num_leading_outliers = &unused1;
|
|
if (!trailing_pos) trailing_pos = &sp_unused2;
|
|
if (!num_trailing_outliers) num_trailing_outliers = &unused2;
|
|
|
|
*num_leading_outliers = *num_trailing_outliers = 0;
|
|
*leading_pos = *trailing_pos = SP_NORMAL;
|
|
|
|
int chopped_start = LeadingUnicharsToChopped(word, rebuilt_blob_index);
|
|
int num_chopped_pieces = word->best_state[rebuilt_blob_index];
|
|
ScriptPos last_pos = SP_NORMAL;
|
|
int trailing_outliers = 0;
|
|
for (int i = 0; i < num_chopped_pieces; i++) {
|
|
TBOX box = word->chopped_word->blobs[chopped_start + i]->bounding_box();
|
|
ScriptPos pos = SP_NORMAL;
|
|
if (box.bottom() >= super_y_bottom) {
|
|
pos = SP_SUPERSCRIPT;
|
|
} else if (box.top() <= sub_y_top) {
|
|
pos = SP_SUBSCRIPT;
|
|
}
|
|
if (pos == SP_NORMAL) {
|
|
if (trailing_outliers == i) {
|
|
*num_leading_outliers = trailing_outliers;
|
|
*leading_pos = last_pos;
|
|
}
|
|
trailing_outliers = 0;
|
|
} else {
|
|
if (pos == last_pos) {
|
|
trailing_outliers++;
|
|
} else {
|
|
trailing_outliers = 1;
|
|
}
|
|
}
|
|
last_pos = pos;
|
|
}
|
|
*num_trailing_outliers = trailing_outliers;
|
|
*trailing_pos = last_pos;
|
|
}
|
|
|
|
/**
|
|
* Attempt to split off any high (or low) bits at the ends of the word with poor
|
|
* certainty and recognize them separately. If the certainty gets much better
|
|
* and other sanity checks pass, acccept.
|
|
*
|
|
* This superscript fix is meant to be called in the second pass of recognition
|
|
* when we have tried once and already have a preliminary answer for word.
|
|
*
|
|
* @return Whether we modified the given word.
|
|
*/
|
|
bool Tesseract::SubAndSuperscriptFix(WERD_RES *word) {
|
|
if (word->tess_failed || word->word->flag(W_REP_CHAR) ||
|
|
!word->best_choice) {
|
|
return false;
|
|
}
|
|
int num_leading, num_trailing;
|
|
ScriptPos sp_leading, sp_trailing;
|
|
float leading_certainty, trailing_certainty;
|
|
float avg_certainty, unlikely_threshold;
|
|
|
|
// Calculate the number of whole suspicious characters at the edges.
|
|
GetSubAndSuperscriptCandidates(
|
|
word, &num_leading, &sp_leading, &leading_certainty,
|
|
&num_trailing, &sp_trailing, &trailing_certainty,
|
|
&avg_certainty, &unlikely_threshold);
|
|
|
|
const char *leading_pos = sp_leading == SP_SUBSCRIPT ? "sub" : "super";
|
|
const char *trailing_pos = sp_trailing == SP_SUBSCRIPT ? "sub" : "super";
|
|
|
|
int num_blobs = word->best_choice->length();
|
|
|
|
// Calculate the remainder (partial characters) at the edges.
|
|
// This accounts for us having classified the best version of
|
|
// a word as [speaker?'] when it was instead [speaker.^{21}]
|
|
// (that is we accidentally thought the 2 was attached to the period).
|
|
int num_remainder_leading = 0, num_remainder_trailing = 0;
|
|
if (num_leading + num_trailing < num_blobs && unlikely_threshold < 0.0) {
|
|
int super_y_bottom =
|
|
kBlnBaselineOffset + kBlnXHeight * superscript_min_y_bottom;
|
|
int sub_y_top =
|
|
kBlnBaselineOffset + kBlnXHeight * subscript_max_y_top;
|
|
int last_word_char = num_blobs - 1 - num_trailing;
|
|
float last_char_certainty = word->best_choice->certainty(last_word_char);
|
|
if (word->best_choice->unichar_id(last_word_char) != 0 &&
|
|
last_char_certainty <= unlikely_threshold) {
|
|
ScriptPos rpos;
|
|
YOutlierPieces(word, last_word_char, super_y_bottom, sub_y_top,
|
|
NULL, NULL, &rpos, &num_remainder_trailing);
|
|
if (num_trailing > 0 && rpos != sp_trailing) num_remainder_trailing = 0;
|
|
if (num_remainder_trailing > 0 &&
|
|
last_char_certainty < trailing_certainty) {
|
|
trailing_certainty = last_char_certainty;
|
|
}
|
|
}
|
|
bool another_blob_available = (num_remainder_trailing == 0) ||
|
|
num_leading + num_trailing + 1 < num_blobs;
|
|
int first_char_certainty = word->best_choice->certainty(num_leading);
|
|
if (another_blob_available &&
|
|
word->best_choice->unichar_id(num_leading) != 0 &&
|
|
first_char_certainty <= unlikely_threshold) {
|
|
ScriptPos lpos;
|
|
YOutlierPieces(word, num_leading, super_y_bottom, sub_y_top,
|
|
&lpos, &num_remainder_leading, NULL, NULL);
|
|
if (num_leading > 0 && lpos != sp_leading) num_remainder_leading = 0;
|
|
if (num_remainder_leading > 0 &&
|
|
first_char_certainty < leading_certainty) {
|
|
leading_certainty = first_char_certainty;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If nothing to do, bail now.
|
|
if (num_leading + num_trailing +
|
|
num_remainder_leading + num_remainder_trailing == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (superscript_debug >= 1) {
|
|
tprintf("Candidate for superscript detection: %s (",
|
|
word->best_choice->unichar_string().string());
|
|
if (num_leading || num_remainder_leading) {
|
|
tprintf("%d.%d %s-leading ", num_leading, num_remainder_leading,
|
|
leading_pos);
|
|
}
|
|
if (num_trailing || num_remainder_trailing) {
|
|
tprintf("%d.%d %s-trailing ", num_trailing, num_remainder_trailing,
|
|
trailing_pos);
|
|
}
|
|
tprintf(")\n");
|
|
}
|
|
if (superscript_debug >= 3) {
|
|
word->best_choice->print();
|
|
}
|
|
if (superscript_debug >= 2) {
|
|
tprintf(" Certainties -- Average: %.2f Unlikely thresh: %.2f ",
|
|
avg_certainty, unlikely_threshold);
|
|
if (num_leading)
|
|
tprintf("Orig. leading (min): %.2f ", leading_certainty);
|
|
if (num_trailing)
|
|
tprintf("Orig. trailing (min): %.2f ", trailing_certainty);
|
|
tprintf("\n");
|
|
}
|
|
|
|
// We've now calculated the number of rebuilt blobs we want to carve off.
|
|
// However, split_word() works from TBLOBs in chopped_word, so we need to
|
|
// convert to those.
|
|
int num_chopped_leading =
|
|
LeadingUnicharsToChopped(word, num_leading) + num_remainder_leading;
|
|
int num_chopped_trailing =
|
|
TrailingUnicharsToChopped(word, num_trailing) + num_remainder_trailing;
|
|
|
|
int retry_leading = 0;
|
|
int retry_trailing = 0;
|
|
bool is_good = false;
|
|
WERD_RES *revised = TrySuperscriptSplits(
|
|
num_chopped_leading, leading_certainty, sp_leading,
|
|
num_chopped_trailing, trailing_certainty, sp_trailing,
|
|
word, &is_good, &retry_leading, &retry_trailing);
|
|
if (is_good) {
|
|
word->ConsumeWordResults(revised);
|
|
} else if (retry_leading || retry_trailing) {
|
|
int retry_chopped_leading =
|
|
LeadingUnicharsToChopped(revised, retry_leading);
|
|
int retry_chopped_trailing =
|
|
TrailingUnicharsToChopped(revised, retry_trailing);
|
|
WERD_RES *revised2 = TrySuperscriptSplits(
|
|
retry_chopped_leading, leading_certainty, sp_leading,
|
|
retry_chopped_trailing, trailing_certainty, sp_trailing,
|
|
revised, &is_good, &retry_leading, &retry_trailing);
|
|
if (is_good) {
|
|
word->ConsumeWordResults(revised2);
|
|
}
|
|
delete revised2;
|
|
}
|
|
delete revised;
|
|
return is_good;
|
|
}
|
|
|
|
/**
|
|
* Determine how many characters (rebuilt blobs) on each end of a given word
|
|
* might plausibly be superscripts so SubAndSuperscriptFix can try to
|
|
* re-recognize them. Even if we find no whole blobs at either end,
|
|
* we will set *unlikely_threshold to a certainty that might be used to
|
|
* select "bad enough" outlier characters. If *unlikely_threshold is set to 0,
|
|
* though, there's really no hope.
|
|
*
|
|
* @param[in] word The word to examine.
|
|
* @param[out] num_rebuilt_leading the number of rebuilt blobs at the start
|
|
* of the word which are all up or down and
|
|
* seem badly classified.
|
|
* @param[out] leading_pos "super" or "sub" (for debugging)
|
|
* @param[out] leading_certainty the worst certainty in the leading blobs.
|
|
* @param[out] num_rebuilt_trailing the number of rebuilt blobs at the end
|
|
* of the word which are all up or down and
|
|
* seem badly classified.
|
|
* @param[out] trailing_pos "super" or "sub" (for debugging)
|
|
* @param[out] trailing_certainty the worst certainty in the trailing blobs.
|
|
* @param[out] avg_certainty the average certainty of "normal" blobs in
|
|
* the word.
|
|
* @param[out] unlikely_threshold the threshold (on certainty) we used to
|
|
* select "bad enough" outlier characters.
|
|
*/
|
|
void Tesseract::GetSubAndSuperscriptCandidates(const WERD_RES *word,
|
|
int *num_rebuilt_leading,
|
|
ScriptPos *leading_pos,
|
|
float *leading_certainty,
|
|
int *num_rebuilt_trailing,
|
|
ScriptPos *trailing_pos,
|
|
float *trailing_certainty,
|
|
float *avg_certainty,
|
|
float *unlikely_threshold) {
|
|
*avg_certainty = *unlikely_threshold = 0.0f;
|
|
*num_rebuilt_leading = *num_rebuilt_trailing = 0;
|
|
*leading_certainty = *trailing_certainty = 0.0f;
|
|
|
|
int super_y_bottom =
|
|
kBlnBaselineOffset + kBlnXHeight * superscript_min_y_bottom;
|
|
int sub_y_top =
|
|
kBlnBaselineOffset + kBlnXHeight * subscript_max_y_top;
|
|
|
|
// Step one: Get an average certainty for "normally placed" characters.
|
|
|
|
// Counts here are of blobs in the rebuild_word / unichars in best_choice.
|
|
*leading_pos = *trailing_pos = SP_NORMAL;
|
|
int leading_outliers = 0;
|
|
int trailing_outliers = 0;
|
|
int num_normal = 0;
|
|
float normal_certainty_total = 0.0f;
|
|
float worst_normal_certainty = 0.0f;
|
|
ScriptPos last_pos = SP_NORMAL;
|
|
int num_blobs = word->rebuild_word->NumBlobs();
|
|
for (int b = 0; b < num_blobs; ++b) {
|
|
TBOX box = word->rebuild_word->blobs[b]->bounding_box();
|
|
ScriptPos pos = SP_NORMAL;
|
|
if (box.bottom() >= super_y_bottom) {
|
|
pos = SP_SUPERSCRIPT;
|
|
} else if (box.top() <= sub_y_top) {
|
|
pos = SP_SUBSCRIPT;
|
|
}
|
|
if (pos == SP_NORMAL) {
|
|
if (word->best_choice->unichar_id(b) != 0) {
|
|
float char_certainty = word->best_choice->certainty(b);
|
|
if (char_certainty < worst_normal_certainty) {
|
|
worst_normal_certainty = char_certainty;
|
|
}
|
|
num_normal++;
|
|
normal_certainty_total += char_certainty;
|
|
}
|
|
if (trailing_outliers == b) {
|
|
leading_outliers = trailing_outliers;
|
|
*leading_pos = last_pos;
|
|
}
|
|
trailing_outliers = 0;
|
|
} else {
|
|
if (last_pos == pos) {
|
|
trailing_outliers++;
|
|
} else {
|
|
trailing_outliers = 1;
|
|
}
|
|
}
|
|
last_pos = pos;
|
|
}
|
|
*trailing_pos = last_pos;
|
|
if (num_normal >= 3) { // throw out the worst as an outlier.
|
|
num_normal--;
|
|
normal_certainty_total -= worst_normal_certainty;
|
|
}
|
|
if (num_normal > 0) {
|
|
*avg_certainty = normal_certainty_total / num_normal;
|
|
*unlikely_threshold = superscript_worse_certainty * (*avg_certainty);
|
|
}
|
|
if (num_normal == 0 ||
|
|
(leading_outliers == 0 && trailing_outliers == 0)) {
|
|
return;
|
|
}
|
|
|
|
// Step two: Try to split off bits of the word that are both outliers
|
|
// and have much lower certainty than average
|
|
// Calculate num_leading and leading_certainty.
|
|
for (*leading_certainty = 0.0f, *num_rebuilt_leading = 0;
|
|
*num_rebuilt_leading < leading_outliers;
|
|
(*num_rebuilt_leading)++) {
|
|
float char_certainty = word->best_choice->certainty(*num_rebuilt_leading);
|
|
if (char_certainty > *unlikely_threshold) {
|
|
break;
|
|
}
|
|
if (char_certainty < *leading_certainty) {
|
|
*leading_certainty = char_certainty;
|
|
}
|
|
}
|
|
|
|
// Calculate num_trailing and trailing_certainty.
|
|
for (*trailing_certainty = 0.0f, *num_rebuilt_trailing = 0;
|
|
*num_rebuilt_trailing < trailing_outliers;
|
|
(*num_rebuilt_trailing)++) {
|
|
int blob_idx = num_blobs - 1 - *num_rebuilt_trailing;
|
|
float char_certainty = word->best_choice->certainty(blob_idx);
|
|
if (char_certainty > *unlikely_threshold) {
|
|
break;
|
|
}
|
|
if (char_certainty < *trailing_certainty) {
|
|
*trailing_certainty = char_certainty;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Try splitting off the given number of (chopped) blobs from the front and
|
|
* back of the given word and recognizing the pieces.
|
|
*
|
|
* @param[in] num_chopped_leading how many chopped blobs from the left
|
|
* end of the word to chop off and try recognizing as a
|
|
* superscript (or subscript)
|
|
* @param[in] leading_certainty the (minimum) certainty had by the
|
|
* characters in the original leading section.
|
|
* @param[in] leading_pos "super" or "sub" (for debugging)
|
|
* @param[in] num_chopped_trailing how many chopped blobs from the right
|
|
* end of the word to chop off and try recognizing as a
|
|
* superscript (or subscript)
|
|
* @param[in] trailing_certainty the (minimum) certainty had by the
|
|
* characters in the original trailing section.
|
|
* @param[in] trailing_pos "super" or "sub" (for debugging)
|
|
* @param[in] word the word to try to chop up.
|
|
* @param[out] is_good do we believe our result?
|
|
* @param[out] retry_rebuild_leading, retry_rebuild_trailing
|
|
* If non-zero, and !is_good, then the caller may have luck trying
|
|
* to split the returned word with this number of (rebuilt) leading
|
|
* and trailing blobs / unichars.
|
|
* @return A word which is the result of re-recognizing as asked.
|
|
*/
|
|
WERD_RES *Tesseract::TrySuperscriptSplits(
|
|
int num_chopped_leading, float leading_certainty, ScriptPos leading_pos,
|
|
int num_chopped_trailing, float trailing_certainty,
|
|
ScriptPos trailing_pos,
|
|
WERD_RES *word,
|
|
bool *is_good,
|
|
int *retry_rebuild_leading, int *retry_rebuild_trailing) {
|
|
int num_chopped = word->chopped_word->NumBlobs();
|
|
|
|
*retry_rebuild_leading = *retry_rebuild_trailing = 0;
|
|
|
|
// Chop apart the word into up to three pieces.
|
|
|
|
BlamerBundle *bb0 = NULL;
|
|
BlamerBundle *bb1 = NULL;
|
|
WERD_RES *prefix = NULL;
|
|
WERD_RES *core = NULL;
|
|
WERD_RES *suffix = NULL;
|
|
if (num_chopped_leading > 0) {
|
|
prefix = new WERD_RES(*word);
|
|
split_word(prefix, num_chopped_leading, &core, &bb0);
|
|
} else {
|
|
core = new WERD_RES(*word);
|
|
}
|
|
|
|
if (num_chopped_trailing > 0) {
|
|
int split_pt = num_chopped - num_chopped_trailing - num_chopped_leading;
|
|
split_word(core, split_pt, &suffix, &bb1);
|
|
}
|
|
|
|
// Recognize the pieces in turn.
|
|
int saved_cp_multiplier = classify_class_pruner_multiplier;
|
|
int saved_im_multiplier = classify_integer_matcher_multiplier;
|
|
if (prefix) {
|
|
// Turn off Tesseract's y-position penalties for the leading superscript.
|
|
classify_class_pruner_multiplier.set_value(0);
|
|
classify_integer_matcher_multiplier.set_value(0);
|
|
|
|
// Adjust our expectations about the baseline for this prefix.
|
|
if (superscript_debug >= 3) {
|
|
tprintf(" recognizing first %d chopped blobs\n", num_chopped_leading);
|
|
}
|
|
recog_word_recursive(prefix);
|
|
if (superscript_debug >= 2) {
|
|
tprintf(" The leading bits look like %s %s\n",
|
|
ScriptPosToString(leading_pos),
|
|
prefix->best_choice->unichar_string().string());
|
|
}
|
|
|
|
// Restore the normal y-position penalties.
|
|
classify_class_pruner_multiplier.set_value(saved_cp_multiplier);
|
|
classify_integer_matcher_multiplier.set_value(saved_im_multiplier);
|
|
}
|
|
|
|
if (superscript_debug >= 3) {
|
|
tprintf(" recognizing middle %d chopped blobs\n",
|
|
num_chopped - num_chopped_leading - num_chopped_trailing);
|
|
}
|
|
|
|
if (suffix) {
|
|
// Turn off Tesseract's y-position penalties for the trailing superscript.
|
|
classify_class_pruner_multiplier.set_value(0);
|
|
classify_integer_matcher_multiplier.set_value(0);
|
|
|
|
if (superscript_debug >= 3) {
|
|
tprintf(" recognizing last %d chopped blobs\n", num_chopped_trailing);
|
|
}
|
|
recog_word_recursive(suffix);
|
|
if (superscript_debug >= 2) {
|
|
tprintf(" The trailing bits look like %s %s\n",
|
|
ScriptPosToString(trailing_pos),
|
|
suffix->best_choice->unichar_string().string());
|
|
}
|
|
|
|
// Restore the normal y-position penalties.
|
|
classify_class_pruner_multiplier.set_value(saved_cp_multiplier);
|
|
classify_integer_matcher_multiplier.set_value(saved_im_multiplier);
|
|
}
|
|
|
|
// Evaluate whether we think the results are believably better
|
|
// than what we already had.
|
|
bool good_prefix = !prefix || BelievableSuperscript(
|
|
superscript_debug >= 1, *prefix,
|
|
superscript_bettered_certainty * leading_certainty,
|
|
retry_rebuild_leading, NULL);
|
|
bool good_suffix = !suffix || BelievableSuperscript(
|
|
superscript_debug >= 1, *suffix,
|
|
superscript_bettered_certainty * trailing_certainty,
|
|
NULL, retry_rebuild_trailing);
|
|
|
|
*is_good = good_prefix && good_suffix;
|
|
if (!*is_good && !*retry_rebuild_leading && !*retry_rebuild_trailing) {
|
|
// None of it is any good. Quit now.
|
|
delete core;
|
|
delete prefix;
|
|
delete suffix;
|
|
return NULL;
|
|
}
|
|
recog_word_recursive(core);
|
|
|
|
// Now paste the results together into core.
|
|
if (suffix) {
|
|
suffix->SetAllScriptPositions(trailing_pos);
|
|
join_words(core, suffix, bb1);
|
|
}
|
|
if (prefix) {
|
|
prefix->SetAllScriptPositions(leading_pos);
|
|
join_words(prefix, core, bb0);
|
|
core = prefix;
|
|
prefix = NULL;
|
|
}
|
|
|
|
if (superscript_debug >= 1) {
|
|
tprintf("%s superscript fix: %s\n", *is_good ? "ACCEPT" : "REJECT",
|
|
core->best_choice->unichar_string().string());
|
|
}
|
|
return core;
|
|
}
|
|
|
|
|
|
/**
|
|
* Return whether this is believable superscript or subscript text.
|
|
*
|
|
* We insist that:
|
|
* + there are no punctuation marks.
|
|
* + there are no italics.
|
|
* + no normal-sized character is smaller than superscript_scaledown_ratio
|
|
* of what it ought to be, and
|
|
* + each character is at least as certain as certainty_threshold.
|
|
*
|
|
* @param[in] debug If true, spew debug output
|
|
* @param[in] word The word whose best_choice we're evaluating
|
|
* @param[in] certainty_threshold If any of the characters have less
|
|
* certainty than this, reject.
|
|
* @param[out] left_ok How many left-side characters were ok?
|
|
* @param[out] right_ok How many right-side characters were ok?
|
|
* @return Whether the complete best choice is believable as a superscript.
|
|
*/
|
|
bool Tesseract::BelievableSuperscript(bool debug,
|
|
const WERD_RES &word,
|
|
float certainty_threshold,
|
|
int *left_ok,
|
|
int *right_ok) const {
|
|
int initial_ok_run_count = 0;
|
|
int ok_run_count = 0;
|
|
float worst_certainty = 0.0f;
|
|
const WERD_CHOICE &wc = *word.best_choice;
|
|
|
|
const UnicityTable<FontInfo>& fontinfo_table = get_fontinfo_table();
|
|
for (int i = 0; i < wc.length(); i++) {
|
|
TBLOB *blob = word.rebuild_word->blobs[i];
|
|
UNICHAR_ID unichar_id = wc.unichar_id(i);
|
|
float char_certainty = wc.certainty(i);
|
|
bool bad_certainty = char_certainty < certainty_threshold;
|
|
bool is_punc = wc.unicharset()->get_ispunctuation(unichar_id);
|
|
bool is_italic = word.fontinfo && word.fontinfo->is_italic();
|
|
BLOB_CHOICE *choice = word.GetBlobChoice(i);
|
|
if (choice && fontinfo_table.size() > 0) {
|
|
// Get better information from the specific choice, if available.
|
|
int font_id1 = choice->fontinfo_id();
|
|
bool font1_is_italic = font_id1 >= 0
|
|
? fontinfo_table.get(font_id1).is_italic() : false;
|
|
int font_id2 = choice->fontinfo_id2();
|
|
is_italic = font1_is_italic &&
|
|
(font_id2 < 0 || fontinfo_table.get(font_id2).is_italic());
|
|
}
|
|
|
|
float height_fraction = 1.0f;
|
|
float char_height = blob->bounding_box().height();
|
|
float normal_height = char_height;
|
|
if (wc.unicharset()->top_bottom_useful()) {
|
|
int min_bot, max_bot, min_top, max_top;
|
|
wc.unicharset()->get_top_bottom(unichar_id,
|
|
&min_bot, &max_bot,
|
|
&min_top, &max_top);
|
|
float hi_height = max_top - max_bot;
|
|
float lo_height = min_top - min_bot;
|
|
normal_height = (hi_height + lo_height) / 2;
|
|
if (normal_height >= kBlnXHeight) {
|
|
// Only ding characters that we have decent information for because
|
|
// they're supposed to be normal sized, not tiny specks or dashes.
|
|
height_fraction = char_height / normal_height;
|
|
}
|
|
}
|
|
bool bad_height = height_fraction < superscript_scaledown_ratio;
|
|
|
|
if (debug) {
|
|
if (is_italic) {
|
|
tprintf(" Rejecting: superscript is italic.\n");
|
|
}
|
|
if (is_punc) {
|
|
tprintf(" Rejecting: punctuation present.\n");
|
|
}
|
|
const char *char_str = wc.unicharset()->id_to_unichar(unichar_id);
|
|
if (bad_certainty) {
|
|
tprintf(" Rejecting: don't believe character %s with certainty %.2f "
|
|
"which is less than threshold %.2f\n", char_str,
|
|
char_certainty, certainty_threshold);
|
|
}
|
|
if (bad_height) {
|
|
tprintf(" Rejecting: character %s seems too small @ %.2f versus "
|
|
"expected %.2f\n", char_str, char_height, normal_height);
|
|
}
|
|
}
|
|
if (bad_certainty || bad_height || is_punc || is_italic) {
|
|
if (ok_run_count == i) {
|
|
initial_ok_run_count = ok_run_count;
|
|
}
|
|
ok_run_count = 0;
|
|
} else {
|
|
ok_run_count++;
|
|
}
|
|
if (char_certainty < worst_certainty) {
|
|
worst_certainty = char_certainty;
|
|
}
|
|
}
|
|
bool all_ok = ok_run_count == wc.length();
|
|
if (all_ok && debug) {
|
|
tprintf(" Accept: worst revised certainty is %.2f\n", worst_certainty);
|
|
}
|
|
if (!all_ok) {
|
|
if (left_ok) *left_ok = initial_ok_run_count;
|
|
if (right_ok) *right_ok = ok_run_count;
|
|
}
|
|
return all_ok;
|
|
}
|
|
|
|
|
|
} // namespace tesseract
|