mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-30 20:38:29 +08:00
57755a2754
Signed-off-by: Stefan Weil <sw@weilnetz.de>
238 lines
8.9 KiB
C++
238 lines
8.9 KiB
C++
// Copyright 2012 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
///////////////////////////////////////////////////////////////////////
|
|
// File: genericheap.h
|
|
// Description: Template heap class.
|
|
// Author: Ray Smith, based on Dan Johnson's original code.
|
|
// Created: Wed Mar 14 08:13:00 PDT 2012
|
|
//
|
|
// (C) Copyright 2012, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_CCUTIL_GENERICHEAP_H_
|
|
#define TESSERACT_CCUTIL_GENERICHEAP_H_
|
|
|
|
#include "errcode.h"
|
|
#include "genericvector.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// GenericHeap requires 1 template argument:
|
|
// Pair will normally be either KDPairInc<Key, Data> or KDPairDec<Key, Data>
|
|
// for some arbitrary Key and scalar, smart pointer, or non-ownership pointer
|
|
// Data type, according to whether a MIN heap or a MAX heap is desired,
|
|
// respectively. Using KDPtrPairInc<Key, Data> or KDPtrPairDec<Key, Data>,
|
|
// GenericHeap can also handle simple Data pointers and own them.
|
|
// If no additional data is required, Pair can also be a scalar, since
|
|
// GenericHeap doesn't look inside it except for operator<.
|
|
//
|
|
// The heap is stored as a packed binary tree in an array hosted by a
|
|
// GenericVector<Pair>, with the invariant that the children of each node are
|
|
// both NOT Pair::operator< the parent node. KDPairInc defines Pair::operator<
|
|
// to use Key::operator< to generate a MIN heap and KDPairDec defines
|
|
// Pair::operator< to use Key::operator> to generate a MAX heap by reversing
|
|
// all the comparisons.
|
|
// See http://en.wikipedia.org/wiki/Heap_(data_structure) for more detail on
|
|
// the basic heap implementation.
|
|
//
|
|
// Insertion and removal are both O(log n) and, unlike the STL heap, an
|
|
// explicit Reshuffle function allows a node to be repositioned in time O(log n)
|
|
// after changing its value.
|
|
//
|
|
// Accessing the element for revaluation is a more complex matter, since the
|
|
// index and pointer can be changed arbitrarily by heap operations.
|
|
// Revaluation can be done by making the Data type in the Pair derived from or
|
|
// contain a DoublePtr as its first data element, making it possible to convert
|
|
// the pointer to a Pair using KDPairInc::RecastDataPointer.
|
|
template <typename Pair>
|
|
class GenericHeap {
|
|
public:
|
|
GenericHeap() {}
|
|
// The initial size is only a GenericVector::reserve. It is not enforced as
|
|
// the size limit of the heap. Caller must implement their own enforcement.
|
|
explicit GenericHeap(int initial_size) {
|
|
heap_.reserve(initial_size);
|
|
}
|
|
|
|
// Simple accessors.
|
|
bool empty() const {
|
|
return heap_.empty();
|
|
}
|
|
int size() const {
|
|
return heap_.size();
|
|
}
|
|
int size_reserved() const {
|
|
return heap_.size_reserved();
|
|
}
|
|
void clear() {
|
|
// Clear truncates to 0 to keep the number reserved in tact.
|
|
heap_.truncate(0);
|
|
}
|
|
// Provides access to the underlying vector.
|
|
// Caution! any changes that modify the keys will invalidate the heap!
|
|
GenericVector<Pair>* heap() {
|
|
return &heap_;
|
|
}
|
|
// Provides read-only access to an element of the underlying vector.
|
|
const Pair& get(int index) const {
|
|
return heap_[index];
|
|
}
|
|
|
|
// Add entry to the heap, keeping the smallest item at the top, by operator<.
|
|
// Note that *entry is used as the source of operator=, but it is non-const
|
|
// to allow for a smart pointer to be contained within.
|
|
// Time = O(log n).
|
|
void Push(Pair* entry) {
|
|
int hole_index = heap_.size();
|
|
// Make a hole in the end of heap_ and sift it up to be the correct
|
|
// location for the new *entry. To avoid needing a default constructor
|
|
// for primitive types, and to allow for use of DoublePtr in the Pair
|
|
// somewhere, we have to incur a double copy here.
|
|
heap_.push_back(*entry);
|
|
*entry = heap_.back();
|
|
hole_index = SiftUp(hole_index, *entry);
|
|
heap_[hole_index] = *entry;
|
|
}
|
|
|
|
// Get the value of the top (smallest, defined by operator< ) element.
|
|
const Pair& PeekTop() const {
|
|
return heap_[0];
|
|
}
|
|
// Get the value of the worst (largest, defined by operator< ) element.
|
|
const Pair& PeekWorst() const { return heap_[IndexOfWorst()]; }
|
|
|
|
// Removes the top element of the heap. If entry is not nullptr, the element
|
|
// is copied into *entry, otherwise it is discarded.
|
|
// Returns false if the heap was already empty.
|
|
// Time = O(log n).
|
|
bool Pop(Pair* entry) {
|
|
int new_size = heap_.size() - 1;
|
|
if (new_size < 0)
|
|
return false; // Already empty.
|
|
if (entry != nullptr)
|
|
*entry = heap_[0];
|
|
if (new_size > 0) {
|
|
// Sift the hole at the start of the heap_ downwards to match the last
|
|
// element.
|
|
Pair hole_pair = heap_[new_size];
|
|
heap_.truncate(new_size);
|
|
int hole_index = SiftDown(0, hole_pair);
|
|
heap_[hole_index] = hole_pair;
|
|
} else {
|
|
heap_.truncate(new_size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Removes the MAXIMUM element of the heap. (MIN from a MAX heap.) If entry is
|
|
// not nullptr, the element is copied into *entry, otherwise it is discarded.
|
|
// Time = O(n). Returns false if the heap was already empty.
|
|
bool PopWorst(Pair* entry) {
|
|
int worst_index = IndexOfWorst();
|
|
if (worst_index < 0) return false; // It cannot be empty!
|
|
// Extract the worst element from the heap, leaving a hole at worst_index.
|
|
if (entry != nullptr)
|
|
*entry = heap_[worst_index];
|
|
int heap_size = heap_.size() - 1;
|
|
if (heap_size > 0) {
|
|
// Sift the hole upwards to match the last element of the heap_
|
|
Pair hole_pair = heap_[heap_size];
|
|
int hole_index = SiftUp(worst_index, hole_pair);
|
|
heap_[hole_index] = hole_pair;
|
|
}
|
|
heap_.truncate(heap_size);
|
|
return true;
|
|
}
|
|
|
|
// Returns the index of the worst element. Time = O(n/2).
|
|
int IndexOfWorst() const {
|
|
int heap_size = heap_.size();
|
|
if (heap_size == 0) return -1; // It cannot be empty!
|
|
|
|
// Find the maximum element. Its index is guaranteed to be greater than
|
|
// the index of the parent of the last element, since by the heap invariant
|
|
// the parent must be less than or equal to the children.
|
|
int worst_index = heap_size - 1;
|
|
int end_parent = ParentNode(worst_index);
|
|
for (int i = worst_index - 1; i > end_parent; --i) {
|
|
if (heap_[worst_index] < heap_[i]) worst_index = i;
|
|
}
|
|
return worst_index;
|
|
}
|
|
|
|
// The pointed-to Pair has changed its key value, so the location of pair
|
|
// is reshuffled to maintain the heap invariant.
|
|
// Must be a valid pointer to an element of the heap_!
|
|
// Caution! Since GenericHeap is based on GenericVector, reallocs may occur
|
|
// whenever the vector is extended and elements may get shuffled by any
|
|
// Push or Pop operation. Therefore use this function only if Data in Pair is
|
|
// of type DoublePtr, derived (first) from DoublePtr, or has a DoublePtr as
|
|
// its first element. Reshuffles the heap to maintain the invariant.
|
|
// Time = O(log n).
|
|
void Reshuffle(Pair* pair) {
|
|
int index = pair - &heap_[0];
|
|
Pair hole_pair = heap_[index];
|
|
index = SiftDown(index, hole_pair);
|
|
index = SiftUp(index, hole_pair);
|
|
heap_[index] = hole_pair;
|
|
}
|
|
|
|
private:
|
|
// A hole in the heap exists at hole_index, and we want to fill it with the
|
|
// given pair. SiftUp sifts the hole upward to the correct position and
|
|
// returns the destination index without actually putting pair there.
|
|
int SiftUp(int hole_index, const Pair& pair) {
|
|
int parent;
|
|
while (hole_index > 0 && pair < heap_[parent = ParentNode(hole_index)]) {
|
|
heap_[hole_index] = heap_[parent];
|
|
hole_index = parent;
|
|
}
|
|
return hole_index;
|
|
}
|
|
|
|
// A hole in the heap exists at hole_index, and we want to fill it with the
|
|
// given pair. SiftDown sifts the hole downward to the correct position and
|
|
// returns the destination index without actually putting pair there.
|
|
int SiftDown(int hole_index, const Pair& pair) {
|
|
int heap_size = heap_.size();
|
|
int child;
|
|
while ((child = LeftChild(hole_index)) < heap_size) {
|
|
if (child + 1 < heap_size && heap_[child + 1] < heap_[child])
|
|
++child;
|
|
if (heap_[child] < pair) {
|
|
heap_[hole_index] = heap_[child];
|
|
hole_index = child;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return hole_index;
|
|
}
|
|
|
|
// Functions to navigate the tree. Unlike the original implementation, we
|
|
// store the root at index 0.
|
|
int ParentNode(int index) const {
|
|
return (index + 1) / 2 - 1;
|
|
}
|
|
int LeftChild(int index) const {
|
|
return index * 2 + 1;
|
|
}
|
|
|
|
private:
|
|
GenericVector<Pair> heap_;
|
|
};
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_CCUTIL_GENERICHEAP_H_
|