mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-05 16:57:48 +08:00
53fc4456cc
Eliminated the flexfx scheme for calling global feature extractor functions through an array of function pointers. Deleted dead code I found as a by-product. This CL does not change BlobToTrainingSample or ExtractFeatures to be full members of Classify (the eventual goal) as that would make it even bigger, since there are a lot of callers to these functions. When ExtractFeatures and BlobToTrainingSample are members of Classify they will be able to access control parameters in Classify, which will greatly simplify developing variations to the feature extraction process.
150 lines
3.7 KiB
C++
150 lines
3.7 KiB
C++
/**********************************************************************
|
|
* File: tface.c (Formerly tface.c)
|
|
* Description: C side of the Tess/tessedit C/C++ interface.
|
|
* Author: Ray Smith
|
|
* Created: Mon Apr 27 11:57:06 BST 1992
|
|
*
|
|
* (C) Copyright 1992, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "callcpp.h"
|
|
#include "chop.h"
|
|
#include "chopper.h"
|
|
#include "danerror.h"
|
|
#include "globals.h"
|
|
#include "gradechop.h"
|
|
#include "pageres.h"
|
|
#include "wordrec.h"
|
|
#include "featdefs.h"
|
|
#include "params_model.h"
|
|
|
|
#include <math.h>
|
|
#ifdef __UNIX__
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
/**
|
|
* @name program_editup
|
|
*
|
|
* Initialize all the things in the program that need to be initialized.
|
|
* init_permute determines whether to initialize the permute functions
|
|
* and Dawg models.
|
|
*/
|
|
void Wordrec::program_editup(const char *textbase,
|
|
bool init_classifier,
|
|
bool init_dict) {
|
|
if (textbase != NULL) imagefile = textbase;
|
|
InitFeatureDefs(&feature_defs_);
|
|
InitAdaptiveClassifier(init_classifier);
|
|
if (init_dict) getDict().Load(Dict::GlobalDawgCache());
|
|
pass2_ok_split = chop_ok_split;
|
|
}
|
|
|
|
/**
|
|
* @name end_recog
|
|
*
|
|
* Cleanup and exit the recog program.
|
|
*/
|
|
int Wordrec::end_recog() {
|
|
program_editdown (0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**
|
|
* @name program_editdown
|
|
*
|
|
* This function holds any nessessary post processing for the Wise Owl
|
|
* program.
|
|
*/
|
|
void Wordrec::program_editdown(inT32 elasped_time) {
|
|
EndAdaptiveClassifier();
|
|
getDict().End();
|
|
}
|
|
|
|
|
|
/**
|
|
* @name set_pass1
|
|
*
|
|
* Get ready to do some pass 1 stuff.
|
|
*/
|
|
void Wordrec::set_pass1() {
|
|
chop_ok_split.set_value(70.0);
|
|
language_model_->getParamsModel().SetPass(ParamsModel::PTRAIN_PASS1);
|
|
SettupPass1();
|
|
}
|
|
|
|
|
|
/**
|
|
* @name set_pass2
|
|
*
|
|
* Get ready to do some pass 2 stuff.
|
|
*/
|
|
void Wordrec::set_pass2() {
|
|
chop_ok_split.set_value(pass2_ok_split);
|
|
language_model_->getParamsModel().SetPass(ParamsModel::PTRAIN_PASS2);
|
|
SettupPass2();
|
|
}
|
|
|
|
|
|
/**
|
|
* @name cc_recog
|
|
*
|
|
* Recognize a word.
|
|
*/
|
|
void Wordrec::cc_recog(WERD_RES *word) {
|
|
getDict().reset_hyphen_vars(word->word->flag(W_EOL));
|
|
chop_word_main(word);
|
|
word->DebugWordChoices(getDict().stopper_debug_level >= 1,
|
|
getDict().word_to_debug.string());
|
|
ASSERT_HOST(word->StatesAllValid());
|
|
}
|
|
|
|
|
|
/**
|
|
* @name dict_word()
|
|
*
|
|
* Test the dictionaries, returning NO_PERM (0) if not found, or one
|
|
* of the PermuterType values if found, according to the dictionary.
|
|
*/
|
|
int Wordrec::dict_word(const WERD_CHOICE &word) {
|
|
return getDict().valid_word(word);
|
|
}
|
|
|
|
/**
|
|
* @name call_matcher
|
|
*
|
|
* Called from Tess with a blob in tess form.
|
|
* The blob may need rotating to the correct orientation for classification.
|
|
*/
|
|
BLOB_CHOICE_LIST *Wordrec::call_matcher(TBLOB *tessblob) {
|
|
// Rotate the blob for classification if necessary.
|
|
TBLOB* rotated_blob = tessblob->ClassifyNormalizeIfNeeded();
|
|
if (rotated_blob == NULL) {
|
|
rotated_blob = tessblob;
|
|
}
|
|
BLOB_CHOICE_LIST *ratings = new BLOB_CHOICE_LIST(); // matcher result
|
|
AdaptiveClassifier(rotated_blob, ratings);
|
|
if (rotated_blob != tessblob) {
|
|
delete rotated_blob;
|
|
}
|
|
return ratings;
|
|
}
|
|
|
|
|
|
} // namespace tesseract
|