tesseract/ccutil/genericheap.h
Stefan Weil 70c6f1624c Fix #define guards in header files
Some guards were missing, others were not the first statement.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2016-12-04 15:43:03 +01:00

238 lines
8.9 KiB
C++

// Copyright 2012 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
///////////////////////////////////////////////////////////////////////
// File: genericheap.h
// Description: Template heap class.
// Author: Ray Smith, based on Dan Johnson's original code.
// Created: Wed Mar 14 08:13:00 PDT 2012
//
// (C) Copyright 2012, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_CCUTIL_GENERICHEAP_H_
#define TESSERACT_CCUTIL_GENERICHEAP_H_
#include "errcode.h"
#include "genericvector.h"
namespace tesseract {
// GenericHeap requires 1 template argument:
// Pair will normally be either KDPairInc<Key, Data> or KDPairDec<Key, Data>
// for some arbitrary Key and scalar, smart pointer, or non-ownership pointer
// Data type, according to whether a MIN heap or a MAX heap is desired,
// respectively. Using KDPtrPairInc<Key, Data> or KDPtrPairDec<Key, Data>,
// GenericHeap can also handle simple Data pointers and own them.
// If no additional data is required, Pair can also be a scalar, since
// GenericHeap doesn't look inside it except for operator<.
//
// The heap is stored as a packed binary tree in an array hosted by a
// GenericVector<Pair>, with the invariant that the children of each node are
// both NOT Pair::operator< the parent node. KDPairInc defines Pair::operator<
// to use Key::operator< to generate a MIN heap and KDPairDec defines
// Pair::operator< to use Key::operator> to generate a MAX heap by reversing
// all the comparisons.
// See http://en.wikipedia.org/wiki/Heap_(data_structure) for more detail on
// the basic heap implementation.
//
// Insertion and removal are both O(log n) and, unlike the STL heap, an
// explicit Reshuffle function allows a node to be repositioned in time O(log n)
// after changing its value.
//
// Accessing the element for revaluation is a more complex matter, since the
// index and pointer can be changed arbitrarily by heap operations.
// Revaluation can be done by making the Data type in the Pair derived from or
// contain a DoublePtr as its first data element, making it possible to convert
// the pointer to a Pair using KDPairInc::RecastDataPointer.
template <typename Pair>
class GenericHeap {
public:
GenericHeap() {}
// The initial size is only a GenericVector::reserve. It is not enforced as
// the size limit of the heap. Caller must implement their own enforcement.
explicit GenericHeap(int initial_size) {
heap_.reserve(initial_size);
}
// Simple accessors.
bool empty() const {
return heap_.empty();
}
int size() const {
return heap_.size();
}
int size_reserved() const {
return heap_.size_reserved();
}
void clear() {
// Clear truncates to 0 to keep the number reserved in tact.
heap_.truncate(0);
}
// Provides access to the underlying vector.
// Caution! any changes that modify the keys will invalidate the heap!
GenericVector<Pair>* heap() {
return &heap_;
}
// Provides read-only access to an element of the underlying vector.
const Pair& get(int index) const {
return heap_[index];
}
// Add entry to the heap, keeping the smallest item at the top, by operator<.
// Note that *entry is used as the source of operator=, but it is non-const
// to allow for a smart pointer to be contained within.
// Time = O(log n).
void Push(Pair* entry) {
int hole_index = heap_.size();
// Make a hole in the end of heap_ and sift it up to be the correct
// location for the new *entry. To avoid needing a default constructor
// for primitive types, and to allow for use of DoublePtr in the Pair
// somewhere, we have to incur a double copy here.
heap_.push_back(*entry);
*entry = heap_.back();
hole_index = SiftUp(hole_index, *entry);
heap_[hole_index] = *entry;
}
// Get the value of the top (smallest, defined by operator< ) element.
const Pair& PeekTop() const {
return heap_[0];
}
// Get the value of the worst (largest, defined by operator< ) element.
const Pair& PeekWorst() const { return heap_[IndexOfWorst()]; }
// Removes the top element of the heap. If entry is not NULL, the element
// is copied into *entry, otherwise it is discarded.
// Returns false if the heap was already empty.
// Time = O(log n).
bool Pop(Pair* entry) {
int new_size = heap_.size() - 1;
if (new_size < 0)
return false; // Already empty.
if (entry != NULL)
*entry = heap_[0];
if (new_size > 0) {
// Sift the hole at the start of the heap_ downwards to match the last
// element.
Pair hole_pair = heap_[new_size];
heap_.truncate(new_size);
int hole_index = SiftDown(0, hole_pair);
heap_[hole_index] = hole_pair;
} else {
heap_.truncate(new_size);
}
return true;
}
// Removes the MAXIMUM element of the heap. (MIN from a MAX heap.) If entry is
// not NULL, the element is copied into *entry, otherwise it is discarded.
// Time = O(n). Returns false if the heap was already empty.
bool PopWorst(Pair* entry) {
int worst_index = IndexOfWorst();
if (worst_index < 0) return false; // It cannot be empty!
// Extract the worst element from the heap, leaving a hole at worst_index.
if (entry != NULL)
*entry = heap_[worst_index];
int heap_size = heap_.size() - 1;
if (heap_size > 0) {
// Sift the hole upwards to match the last element of the heap_
Pair hole_pair = heap_[heap_size];
int hole_index = SiftUp(worst_index, hole_pair);
heap_[hole_index] = hole_pair;
}
heap_.truncate(heap_size);
return true;
}
// Returns the index of the worst element. Time = O(n/2).
int IndexOfWorst() const {
int heap_size = heap_.size();
if (heap_size == 0) return -1; // It cannot be empty!
// Find the maximum element. Its index is guaranteed to be greater than
// the index of the parent of the last element, since by the heap invariant
// the parent must be less than or equal to the children.
int worst_index = heap_size - 1;
int end_parent = ParentNode(worst_index);
for (int i = worst_index - 1; i > end_parent; --i) {
if (heap_[worst_index] < heap_[i]) worst_index = i;
}
return worst_index;
}
// The pointed-to Pair has changed its key value, so the location of pair
// is reshuffled to maintain the heap invariant.
// Must be a valid pointer to an element of the heap_!
// Caution! Since GenericHeap is based on GenericVector, reallocs may occur
// whenever the vector is extended and elements may get shuffled by any
// Push or Pop operation. Therefore use this function only if Data in Pair is
// of type DoublePtr, derived (first) from DoublePtr, or has a DoublePtr as
// its first element. Reshuffles the heap to maintain the invariant.
// Time = O(log n).
void Reshuffle(Pair* pair) {
int index = pair - &heap_[0];
Pair hole_pair = heap_[index];
index = SiftDown(index, hole_pair);
index = SiftUp(index, hole_pair);
heap_[index] = hole_pair;
}
private:
// A hole in the heap exists at hole_index, and we want to fill it with the
// given pair. SiftUp sifts the hole upward to the correct position and
// returns the destination index without actually putting pair there.
int SiftUp(int hole_index, const Pair& pair) {
int parent;
while (hole_index > 0 && pair < heap_[parent = ParentNode(hole_index)]) {
heap_[hole_index] = heap_[parent];
hole_index = parent;
}
return hole_index;
}
// A hole in the heap exists at hole_index, and we want to fill it with the
// given pair. SiftDown sifts the hole downward to the correct position and
// returns the destination index without actually putting pair there.
int SiftDown(int hole_index, const Pair& pair) {
int heap_size = heap_.size();
int child;
while ((child = LeftChild(hole_index)) < heap_size) {
if (child + 1 < heap_size && heap_[child + 1] < heap_[child])
++child;
if (heap_[child] < pair) {
heap_[hole_index] = heap_[child];
hole_index = child;
} else {
break;
}
}
return hole_index;
}
// Functions to navigate the tree. Unlike the original implementation, we
// store the root at index 0.
int ParentNode(int index) const {
return (index + 1) / 2 - 1;
}
int LeftChild(int index) const {
return index * 2 + 1;
}
private:
GenericVector<Pair> heap_;
};
} // namespace tesseract
#endif // TESSERACT_CCUTIL_GENERICHEAP_H_