mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-27 10:34:12 +08:00
250 lines
7.5 KiB
C++
250 lines
7.5 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: functions.h
|
|
// Description: Collection of function-objects used by the network layers.
|
|
// Author: Ray Smith
|
|
// Created: Fri Jun 20 10:45:37 PST 2014
|
|
//
|
|
// (C) Copyright 2014, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_LSTM_FUNCTIONS_H_
|
|
#define TESSERACT_LSTM_FUNCTIONS_H_
|
|
|
|
#include <cmath>
|
|
#include "helpers.h"
|
|
#include "tprintf.h"
|
|
|
|
// Setting this to 1 or more causes massive dumps of debug data: weights,
|
|
// updates, internal calculations etc, and reduces the number of test iterations
|
|
// to a small number, so outputs can be diffed.
|
|
#define DEBUG_DETAIL 0
|
|
#if DEBUG_DETAIL > 0
|
|
#undef _OPENMP // Disable open mp to get the outputs in sync.
|
|
#endif
|
|
|
|
namespace tesseract {
|
|
|
|
// Size of static tables.
|
|
const int kTableSize = 4096;
|
|
// Scale factor for float arg to int index.
|
|
const double kScaleFactor = 256.0;
|
|
|
|
extern double TanhTable[];
|
|
extern double LogisticTable[];
|
|
|
|
// Non-linearity (sigmoid) functions with cache tables and clipping.
|
|
inline double Tanh(double x) {
|
|
if (x < 0.0) return -Tanh(-x);
|
|
if (x >= (kTableSize - 1) / kScaleFactor) return 1.0;
|
|
x *= kScaleFactor;
|
|
int index = static_cast<int>(floor(x));
|
|
if (TanhTable[index] == 0.0 && index > 0) {
|
|
// Generate the entry.
|
|
TanhTable[index] = tanh(index / kScaleFactor);
|
|
}
|
|
if (index == kTableSize - 1) return TanhTable[kTableSize - 1];
|
|
if (TanhTable[index + 1] == 0.0) {
|
|
// Generate the entry.
|
|
TanhTable[index + 1] = tanh((index + 1) / kScaleFactor);
|
|
}
|
|
double offset = x - index;
|
|
return TanhTable[index] * (1.0 - offset) + TanhTable[index + 1] * offset;
|
|
}
|
|
|
|
inline double Logistic(double x) {
|
|
if (x < 0.0) return 1.0 - Logistic(-x);
|
|
if (x >= (kTableSize - 1) / kScaleFactor) return 1.0;
|
|
x *= kScaleFactor;
|
|
int index = static_cast<int>(floor(x));
|
|
if (LogisticTable[index] == 0.0) {
|
|
// Generate the entry.
|
|
LogisticTable[index] = 1.0 / (1.0 + exp(-index / kScaleFactor));
|
|
}
|
|
if (index == kTableSize - 1) return LogisticTable[kTableSize - 1];
|
|
if (LogisticTable[index + 1] == 0.0) {
|
|
// Generate the entry.
|
|
LogisticTable[index + 1] = 1.0 / (1.0 + exp(-(index + 1) / kScaleFactor));
|
|
}
|
|
double offset = x - index;
|
|
return LogisticTable[index] * (1.0 - offset) +
|
|
LogisticTable[index + 1] * offset;
|
|
}
|
|
|
|
// Non-linearity (sigmoid) functions and their derivatives.
|
|
struct FFunc {
|
|
inline double operator()(double x) const { return Logistic(x); }
|
|
};
|
|
struct FPrime {
|
|
inline double operator()(double y) const { return y * (1.0 - y); }
|
|
};
|
|
struct ClipFFunc {
|
|
inline double operator()(double x) const {
|
|
if (x <= 0.0) return 0.0;
|
|
if (x >= 1.0) return 1.0;
|
|
return x;
|
|
}
|
|
};
|
|
struct ClipFPrime {
|
|
inline double operator()(double y) const {
|
|
return 0.0 < y && y < 1.0 ? 1.0 : 0.0;
|
|
}
|
|
};
|
|
struct Relu {
|
|
inline double operator()(double x) const {
|
|
if (x <= 0.0) return 0.0;
|
|
return x;
|
|
}
|
|
};
|
|
struct ReluPrime {
|
|
inline double operator()(double y) const { return 0.0 < y ? 1.0 : 0.0; }
|
|
};
|
|
struct GFunc {
|
|
inline double operator()(double x) const { return Tanh(x); }
|
|
};
|
|
struct GPrime {
|
|
inline double operator()(double y) const { return 1.0 - y * y; }
|
|
};
|
|
struct ClipGFunc {
|
|
inline double operator()(double x) const {
|
|
if (x <= -1.0) return -1.0;
|
|
if (x >= 1.0) return 1.0;
|
|
return x;
|
|
}
|
|
};
|
|
struct ClipGPrime {
|
|
inline double operator()(double y) const {
|
|
return -1.0 < y && y < 1.0 ? 1.0 : 0.0;
|
|
}
|
|
};
|
|
struct HFunc {
|
|
inline double operator()(double x) const { return Tanh(x); }
|
|
};
|
|
struct HPrime {
|
|
inline double operator()(double y) const {
|
|
double u = Tanh(y);
|
|
return 1.0 - u * u;
|
|
}
|
|
};
|
|
struct UnityFunc {
|
|
inline double operator()(double x) const { return 1.0; }
|
|
};
|
|
struct IdentityFunc {
|
|
inline double operator()(double x) const { return x; }
|
|
};
|
|
|
|
// Applies Func in-place to inout, of size n.
|
|
template <class Func>
|
|
inline void FuncInplace(int n, double* inout) {
|
|
Func f;
|
|
for (int i = 0; i < n; ++i) {
|
|
inout[i] = f(inout[i]);
|
|
}
|
|
}
|
|
// Applies Func to u and multiplies the result by v component-wise,
|
|
// putting the product in out, all of size n.
|
|
template <class Func>
|
|
inline void FuncMultiply(const double* u, const double* v, int n, double* out) {
|
|
Func f;
|
|
for (int i = 0; i < n; ++i) {
|
|
out[i] = f(u[i]) * v[i];
|
|
}
|
|
}
|
|
// Applies the Softmax function in-place to inout, of size n.
|
|
template <typename T>
|
|
inline void SoftmaxInPlace(int n, T* inout) {
|
|
if (n <= 0) return;
|
|
// A limit on the negative range input to exp to guarantee non-zero output.
|
|
const T kMaxSoftmaxActivation = 86.0f;
|
|
|
|
T max_output = inout[0];
|
|
for (int i = 1; i < n; i++) {
|
|
T output = inout[i];
|
|
if (output > max_output) max_output = output;
|
|
}
|
|
T prob_total = 0.0;
|
|
for (int i = 0; i < n; i++) {
|
|
T prob = inout[i] - max_output;
|
|
prob = exp(ClipToRange(prob, -kMaxSoftmaxActivation, static_cast<T>(0)));
|
|
prob_total += prob;
|
|
inout[i] = prob;
|
|
}
|
|
if (prob_total > 0.0) {
|
|
for (int i = 0; i < n; i++) inout[i] /= prob_total;
|
|
}
|
|
}
|
|
|
|
// Copies n values of the given src vector to dest.
|
|
inline void CopyVector(int n, const double* src, double* dest) {
|
|
memcpy(dest, src, n * sizeof(dest[0]));
|
|
}
|
|
|
|
// Adds n values of the given src vector to dest.
|
|
inline void AccumulateVector(int n, const double* src, double* dest) {
|
|
for (int i = 0; i < n; ++i) dest[i] += src[i];
|
|
}
|
|
|
|
// Multiplies n values of inout in-place element-wise by the given src vector.
|
|
inline void MultiplyVectorsInPlace(int n, const double* src, double* inout) {
|
|
for (int i = 0; i < n; ++i) inout[i] *= src[i];
|
|
}
|
|
|
|
// Multiplies n values of u by v, element-wise, accumulating to out.
|
|
inline void MultiplyAccumulate(int n, const double* u, const double* v,
|
|
double* out) {
|
|
for (int i = 0; i < n; i++) {
|
|
out[i] += u[i] * v[i];
|
|
}
|
|
}
|
|
|
|
// Sums the given 5 n-vectors putting the result into sum.
|
|
inline void SumVectors(int n, const double* v1, const double* v2,
|
|
const double* v3, const double* v4, const double* v5,
|
|
double* sum) {
|
|
for (int i = 0; i < n; ++i) {
|
|
sum[i] = v1[i] + v2[i] + v3[i] + v4[i] + v5[i];
|
|
}
|
|
}
|
|
|
|
// Sets the given n-vector vec to 0.
|
|
template <typename T>
|
|
inline void ZeroVector(int n, T* vec) {
|
|
memset(vec, 0, n * sizeof(*vec));
|
|
}
|
|
|
|
// Clips the given vector vec, of size n to [lower, upper].
|
|
template <typename T>
|
|
inline void ClipVector(int n, T lower, T upper, T* vec) {
|
|
for (int i = 0; i < n; ++i) vec[i] = ClipToRange(vec[i], lower, upper);
|
|
}
|
|
|
|
// Converts the given n-vector to a binary encoding of the maximum value,
|
|
// encoded as vector of nf binary values.
|
|
inline void CodeInBinary(int n, int nf, double* vec) {
|
|
if (nf <= 0 || n < nf) return;
|
|
int index = 0;
|
|
double best_score = vec[0];
|
|
for (int i = 1; i < n; ++i) {
|
|
if (vec[i] > best_score) {
|
|
best_score = vec[i];
|
|
index = i;
|
|
}
|
|
}
|
|
int mask = 1;
|
|
for (int i = 0; i < nf; ++i, mask *= 2) {
|
|
vec[i] = (index & mask) ? 1.0 : 0.0;
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif // TESSERACT_LSTM_FUNCTIONS_H_
|