mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-27 10:34:12 +08:00
0c9235ebc2
All of them were found and fixed by codespell. Signed-off-by: Stefan Weil <sw@weilnetz.de>
92 lines
3.7 KiB
C++
92 lines
3.7 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: series.h
|
|
// Description: Runs networks in series on the same input.
|
|
// Author: Ray Smith
|
|
// Created: Thu May 02 08:20:06 PST 2013
|
|
//
|
|
// (C) Copyright 2013, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_LSTM_SERIES_H_
|
|
#define TESSERACT_LSTM_SERIES_H_
|
|
|
|
#include "plumbing.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Runs two or more networks in series (layers) on the same input.
|
|
class Series : public Plumbing {
|
|
public:
|
|
// ni_ and no_ will be set by AddToStack.
|
|
explicit Series(const STRING& name);
|
|
virtual ~Series();
|
|
|
|
// Returns the shape output from the network given an input shape (which may
|
|
// be partially unknown ie zero).
|
|
virtual StaticShape OutputShape(const StaticShape& input_shape) const;
|
|
|
|
virtual STRING spec() const {
|
|
STRING spec("[");
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
spec += stack_[i]->spec();
|
|
spec += "]";
|
|
return spec;
|
|
}
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
// Returns the number of weights initialized.
|
|
virtual int InitWeights(float range, TRand* randomizer);
|
|
|
|
// Sets needs_to_backprop_ to needs_backprop and returns true if
|
|
// needs_backprop || any weights in this network so the next layer forward
|
|
// can be told to produce backprop for this layer if needed.
|
|
virtual bool SetupNeedsBackprop(bool needs_backprop);
|
|
|
|
// Returns an integer reduction factor that the network applies to the
|
|
// time sequence. Assumes that any 2-d is already eliminated. Used for
|
|
// scaling bounding boxes of truth data.
|
|
// WARNING: if GlobalMinimax is used to vary the scale, this will return
|
|
// the last used scale factor. Call it before any forward, and it will return
|
|
// the minimum scale factor of the paths through the GlobalMinimax.
|
|
virtual int XScaleFactor() const;
|
|
|
|
// Provides the (minimum) x scale factor to the network (of interest only to
|
|
// input units) so they can determine how to scale bounding boxes.
|
|
virtual void CacheXScaleFactor(int factor);
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
// See Network for a detailed discussion of the arguments.
|
|
virtual void Forward(bool debug, const NetworkIO& input,
|
|
const TransposedArray* input_transpose,
|
|
NetworkScratch* scratch, NetworkIO* output);
|
|
|
|
// Runs backward propagation of errors on the deltas line.
|
|
// See Network for a detailed discussion of the arguments.
|
|
virtual bool Backward(bool debug, const NetworkIO& fwd_deltas,
|
|
NetworkScratch* scratch,
|
|
NetworkIO* back_deltas);
|
|
|
|
// Splits the series after the given index, returning the two parts and
|
|
// deletes itself. The first part, up to network with index last_start, goes
|
|
// into start, and the rest goes into end.
|
|
void SplitAt(int last_start, Series** start, Series** end);
|
|
|
|
// Appends the elements of the src series to this, removing from src and
|
|
// deleting it.
|
|
void AppendSeries(Network* src);
|
|
};
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif // TESSERACT_LSTM_SERIES_H_
|