tesseract/classify/errorcounter.h
Stefan Weil 72ac460f96 classify: Replace NULL by nullptr
Signed-off-by: Stefan Weil <sw@weilnetz.de>
2018-04-22 17:42:35 +02:00

228 lines
11 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_
#define THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_
#include "genericvector.h"
#include "matrix.h"
#include "statistc.h"
struct Pix;
template <typename T> class UnicityTable;
namespace tesseract {
struct FontInfo;
class FontInfoTable;
class SampleIterator;
class ShapeClassifier;
class TrainingSample;
struct UnicharRating;
// Enumeration of the different types of error count.
// Error counts work as follows:
//
// Ground truth is a valid unichar-id / font-id pair:
// Number of classifier answers?
// 0 >0
// CT_REJECT unichar-id matches top shape?
// __________ yes! no
// CT_UNICHAR_TOP_OK CT_UNICHAR_TOP1_ERR
// Top shape-id has multiple unichars? 2nd shape unichar id matches?
// yes! no yes! no
// CT_OK_MULTI_UNICHAR | _____ CT_UNICHAR_TOP2_ERR
// Font attributes match? Any unichar-id matches?
// yes! no yes! no
// CT_FONT_ATTR_OK CT_FONT_ATTR_ERR ______ CT_UNICHAR_TOPN_ERR
// | __________________ _________________
// Top shape-id has multiple font attrs?
// yes! no
// CT_OK_MULTI_FONT
// _____________________________
//
// Note that multiple counts may be activated for a single sample!
//
// Ground truth is for a fragment/n-gram that is NOT in the unicharset.
// This is called junk and is expected to be rejected:
// Number of classifier answers?
// 0 >0
// CT_REJECTED_JUNK CT_ACCEPTED_JUNK
//
// Also, CT_NUM_RESULTS stores the mean number of results, and CT_RANK stores
// the mean rank of the correct result, counting from 0, and with an error
// receiving the number of answers as the correct rank.
//
// Keep in sync with the ReportString function.
enum CountTypes {
CT_UNICHAR_TOP_OK, // Top shape contains correct unichar id.
// The rank of the results in TOP1, TOP2, TOPN is determined by a gap of
// kRatingEpsilon from the first result in each group. The real top choice
// is measured using TOPTOP.
CT_UNICHAR_TOP1_ERR, // Top shape does not contain correct unichar id.
CT_UNICHAR_TOP2_ERR, // Top 2 shapes don't contain correct unichar id.
CT_UNICHAR_TOPN_ERR, // No output shape contains correct unichar id.
CT_UNICHAR_TOPTOP_ERR, // Very top choice not correct.
CT_OK_MULTI_UNICHAR, // Top shape id has correct unichar id, and others.
CT_OK_JOINED, // Top shape id is correct but marked joined.
CT_OK_BROKEN, // Top shape id is correct but marked broken.
CT_REJECT, // Classifier hates this.
CT_FONT_ATTR_ERR, // Top unichar OK, but font attributes incorrect.
CT_OK_MULTI_FONT, // CT_FONT_ATTR_OK but there are multiple font attrs.
CT_NUM_RESULTS, // Number of answers produced.
CT_RANK, // Rank of correct answer.
CT_REJECTED_JUNK, // Junk that was correctly rejected.
CT_ACCEPTED_JUNK, // Junk that was incorrectly classified otherwise.
CT_SIZE // Number of types for array sizing.
};
// Class to encapsulate all the functionality and sub-structures required
// to count errors for an isolated character classifier (ShapeClassifier).
class ErrorCounter {
public:
// Computes and returns the unweighted boosting_mode error rate of the given
// classifier. Can be used for testing, or inside an iterative training
// system, including one that uses boosting.
// report_levels:
// 0 = no output.
// 1 = bottom-line error rate.
// 2 = bottom-line error rate + time.
// 3 = font-level error rate + time.
// 4 = list of all errors + short classifier debug output on 16 errors.
// 5 = list of all errors + short classifier debug output on 25 errors.
// * The boosting_mode determines which error type is used for computing the
// scaled_error output, and setting the is_error flag in the samples.
// * The fontinfo_table is used to get string font names for the debug
// output, and also to count font attributes errors.
// * The page_images vector may contain a Pix* (which may be nullptr) for each
// page index assigned to the samples.
// * The it provides encapsulated iteration over some sample set.
// * The outputs unichar_error, scaled_error and totals_report are all
// optional.
// * If not nullptr, unichar error gets the top1 unichar error rate.
// * Scaled_error gets the error chosen by boosting_mode weighted by the
// weights on the samples.
// * Fonts_report gets a string summarizing the error rates for each font in
// both human-readable form and as a tab-separated list of error counts.
// The human-readable form is all before the first tab.
// * The return value is the un-weighted version of the scaled_error.
static double ComputeErrorRate(ShapeClassifier* classifier,
int report_level, CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const GenericVector<Pix*>& page_images,
SampleIterator* it,
double* unichar_error,
double* scaled_error,
STRING* fonts_report);
// Tests a pair of classifiers, debugging errors of the new against the old.
// See errorcounter.h for description of arguments.
// Iterates over the samples, calling the classifiers in normal/silent mode.
// If the new_classifier makes a boosting_mode error that the old_classifier
// does not, and the appropriate, it will then call the new_classifier again
// with a debug flag and a keep_this argument to find out what is going on.
static void DebugNewErrors(ShapeClassifier* new_classifier,
ShapeClassifier* old_classifier,
CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const GenericVector<Pix*>& page_images,
SampleIterator* it);
private:
// Simple struct to hold an array of counts.
struct Counts {
Counts();
// Adds other into this for computing totals.
void operator+=(const Counts& other);
int n[CT_SIZE];
};
// Constructor is private. Only anticipated use of ErrorCounter is via
// the static ComputeErrorRate.
ErrorCounter(const UNICHARSET& unicharset, int fontsize);
~ErrorCounter();
// Accumulates the errors from the classifier results on a single sample.
// Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred.
// boosting_mode selects the type of error to be used for boosting and the
// is_error_ member of sample is set according to whether the required type
// of error occurred. The font_table provides access to font properties
// for error counting and shape_table is used to understand the relationship
// between unichar_ids and shape_ids in the results
bool AccumulateErrors(bool debug, CountTypes boosting_mode,
const FontInfoTable& font_table,
const GenericVector<UnicharRating>& results,
TrainingSample* sample);
// Accumulates counts for junk. Counts only whether the junk was correctly
// rejected or not.
bool AccumulateJunk(bool debug, const GenericVector<UnicharRating>& results,
TrainingSample* sample);
// Creates a report of the error rate. The report_level controls the detail
// that is reported to stderr via tprintf:
// 0 -> no output.
// >=1 -> bottom-line error rate.
// >=3 -> font-level error rate.
// boosting_mode determines the return value. It selects which (un-weighted)
// error rate to return.
// The fontinfo_table from MasterTrainer provides the names of fonts.
// The it determines the current subset of the training samples.
// If not nullptr, the top-choice unichar error rate is saved in unichar_error.
// If not nullptr, the report string is saved in fonts_report.
// (Ignoring report_level).
double ReportErrors(int report_level, CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const SampleIterator& it,
double* unichar_error,
STRING* fonts_report);
// Sets the report string to a combined human and machine-readable report
// string of the error rates.
// Returns false if there is no data, leaving report unchanged, unless
// even_if_empty is true.
static bool ReportString(bool even_if_empty, const Counts& counts,
STRING* report);
// Computes the error rates and returns in rates which is an array of size
// CT_SIZE. Returns false if there is no data, leaving rates unchanged.
static bool ComputeRates(const Counts& counts, double rates[CT_SIZE]);
// Total scaled error used by boosting algorithms.
double scaled_error_;
// Difference in result rating to be thought of as an "equal" choice.
double rating_epsilon_;
// Vector indexed by font_id from the samples of error accumulators.
GenericVector<Counts> font_counts_;
// Counts of the results that map each unichar_id (from samples) to an
// incorrect shape_id.
GENERIC_2D_ARRAY<int> unichar_counts_;
// Count of the number of times each shape_id occurs, is correct, and multi-
// unichar.
GenericVector<int> multi_unichar_counts_;
// Histogram of scores (as percent) for correct answers.
STATS ok_score_hist_;
// Histogram of scores (as percent) for incorrect answers.
STATS bad_score_hist_;
// Unicharset for printing character ids in results.
const UNICHARSET& unicharset_;
};
} // namespace tesseract.
#endif /* THIRD_PARTY_TESSERACT_CLASSIFY_ERRORCOUNTER_H_ */