tesseract/wordrec/wordrec.h
Stefan Weil 58d9593094 wordrec: Replace NULL by nullptr
Signed-off-by: Stefan Weil <sw@weilnetz.de>
2018-04-22 17:42:36 +02:00

491 lines
22 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: wordrec.h
// Description: wordrec class.
// Author: Samuel Charron
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_WORDREC_H_
#define TESSERACT_WORDREC_WORDREC_H_
#include "associate.h"
#include "classify.h"
#include "dict.h"
#include "language_model.h"
#include "ratngs.h"
#include "matrix.h"
#include "gradechop.h"
#include "seam.h"
#include "findseam.h"
#include "callcpp.h"
class WERD_RES;
namespace tesseract {
// A class for storing which nodes are to be processed by the segmentation
// search. There is a single SegSearchPending for each column in the ratings
// matrix, and it indicates whether the segsearch should combine all
// BLOB_CHOICES in the column, or just the given row with the parents
// corresponding to *this SegSearchPending, and whether only updated parent
// ViterbiStateEntries should be combined, or all, with the BLOB_CHOICEs.
class SegSearchPending {
public:
SegSearchPending()
: classified_row_(-1),
revisit_whole_column_(false),
column_classified_(false) {}
// Marks the whole column as just classified. Used to start a search on
// a newly initialized ratings matrix.
void SetColumnClassified() {
column_classified_ = true;
}
// Marks the matrix entry at the given row as just classified.
// Used after classifying a new matrix cell.
// Additional to, not overriding a previous RevisitWholeColumn.
void SetBlobClassified(int row) {
classified_row_ = row;
}
// Marks the whole column as needing work, but not just classified.
// Used when the parent vse list is updated.
// Additional to, not overriding a previous SetBlobClassified.
void RevisitWholeColumn() {
revisit_whole_column_ = true;
}
// Clears *this to indicate no work to do.
void Clear() {
classified_row_ = -1;
revisit_whole_column_ = false;
column_classified_ = false;
}
// Returns true if there are updates to do in the column that *this
// represents.
bool WorkToDo() const {
return revisit_whole_column_ || column_classified_ || classified_row_ >= 0;
}
// Returns true if the given row was just classified.
bool IsRowJustClassified(int row) const {
return row == classified_row_ || column_classified_;
}
// Returns the single row to process if there is only one, otherwise -1.
int SingleRow() const {
return revisit_whole_column_ || column_classified_ ? -1 : classified_row_;
}
private:
// If non-negative, indicates the single row in the ratings matrix that has
// just been classified, and so should be combined with all the parents in the
// column that this SegSearchPending represents.
// Operates independently of revisit_whole_column.
int classified_row_;
// If revisit_whole_column is true, then all BLOB_CHOICEs in this column will
// be processed, but classified_row can indicate a row that is newly
// classified. Overridden if column_classified is true.
bool revisit_whole_column_;
// If column_classified is true, parent vses are processed with all rows
// regardless of whether they are just updated, overriding
// revisit_whole_column and classified_row.
bool column_classified_;
};
/* ccmain/tstruct.cpp *********************************************************/
class FRAGMENT:public ELIST_LINK
{
public:
FRAGMENT() { //constructor
}
FRAGMENT(EDGEPT *head_pt, //start
EDGEPT *tail_pt); //end
ICOORD head; //coords of start
ICOORD tail; //coords of end
EDGEPT *headpt; //start point
EDGEPT *tailpt; //end point
};
ELISTIZEH(FRAGMENT)
class Wordrec : public Classify {
public:
// config parameters *******************************************************
BOOL_VAR_H(merge_fragments_in_matrix, TRUE,
"Merge the fragments in the ratings matrix and delete them "
"after merging");
BOOL_VAR_H(wordrec_no_block, FALSE, "Don't output block information");
BOOL_VAR_H(wordrec_enable_assoc, TRUE, "Associator Enable");
BOOL_VAR_H(force_word_assoc, FALSE,
"force associator to run regardless of what enable_assoc is."
"This is used for CJK where component grouping is necessary.");
double_VAR_H(wordrec_worst_state, 1, "Worst segmentation state");
BOOL_VAR_H(fragments_guide_chopper, FALSE,
"Use information from fragments to guide chopping process");
INT_VAR_H(repair_unchopped_blobs, 1, "Fix blobs that aren't chopped");
double_VAR_H(tessedit_certainty_threshold, -2.25, "Good blob limit");
INT_VAR_H(chop_debug, 0, "Chop debug");
BOOL_VAR_H(chop_enable, 1, "Chop enable");
BOOL_VAR_H(chop_vertical_creep, 0, "Vertical creep");
INT_VAR_H(chop_split_length, 10000, "Split Length");
INT_VAR_H(chop_same_distance, 2, "Same distance");
INT_VAR_H(chop_min_outline_points, 6, "Min Number of Points on Outline");
INT_VAR_H(chop_seam_pile_size, 150, "Max number of seams in seam_pile");
BOOL_VAR_H(chop_new_seam_pile, 1, "Use new seam_pile");
INT_VAR_H(chop_inside_angle, -50, "Min Inside Angle Bend");
INT_VAR_H(chop_min_outline_area, 2000, "Min Outline Area");
double_VAR_H(chop_split_dist_knob, 0.5, "Split length adjustment");
double_VAR_H(chop_overlap_knob, 0.9, "Split overlap adjustment");
double_VAR_H(chop_center_knob, 0.15, "Split center adjustment");
INT_VAR_H(chop_centered_maxwidth, 90, "Width of (smaller) chopped blobs "
"above which we don't care that a chop is not near the center.");
double_VAR_H(chop_sharpness_knob, 0.06, "Split sharpness adjustment");
double_VAR_H(chop_width_change_knob, 5.0, "Width change adjustment");
double_VAR_H(chop_ok_split, 100.0, "OK split limit");
double_VAR_H(chop_good_split, 50.0, "Good split limit");
INT_VAR_H(chop_x_y_weight, 3, "X / Y length weight");
INT_VAR_H(segment_adjust_debug, 0, "Segmentation adjustment debug");
BOOL_VAR_H(assume_fixed_pitch_char_segment, FALSE,
"include fixed-pitch heuristics in char segmentation");
INT_VAR_H(wordrec_debug_level, 0, "Debug level for wordrec");
INT_VAR_H(wordrec_max_join_chunks, 4,
"Max number of broken pieces to associate");
BOOL_VAR_H(wordrec_skip_no_truth_words, false,
"Only run OCR for words that had truth recorded in BlamerBundle");
BOOL_VAR_H(wordrec_debug_blamer, false, "Print blamer debug messages");
BOOL_VAR_H(wordrec_run_blamer, false, "Try to set the blame for errors");
INT_VAR_H(segsearch_debug_level, 0, "SegSearch debug level");
INT_VAR_H(segsearch_max_pain_points, 2000,
"Maximum number of pain points stored in the queue");
INT_VAR_H(segsearch_max_futile_classifications, 10,
"Maximum number of pain point classifications per word.");
double_VAR_H(segsearch_max_char_wh_ratio, 2.0,
"Maximum character width-to-height ratio");
BOOL_VAR_H(save_alt_choices, true,
"Save alternative paths found during chopping "
"and segmentation search");
// methods from wordrec/*.cpp ***********************************************
Wordrec();
virtual ~Wordrec();
// Fills word->alt_choices with alternative paths found during
// chopping/segmentation search that are kept in best_choices.
void SaveAltChoices(const LIST &best_choices, WERD_RES *word);
// Fills character choice lattice in the given BlamerBundle
// using the given ratings matrix and best choice list.
void FillLattice(const MATRIX &ratings, const WERD_CHOICE_LIST &best_choices,
const UNICHARSET &unicharset, BlamerBundle *blamer_bundle);
// Calls fill_lattice_ member function
// (assumes that fill_lattice_ is not nullptr).
void CallFillLattice(const MATRIX &ratings,
const WERD_CHOICE_LIST &best_choices,
const UNICHARSET &unicharset,
BlamerBundle *blamer_bundle) {
(this->*fill_lattice_)(ratings, best_choices, unicharset, blamer_bundle);
}
// tface.cpp
void program_editup(const char *textbase, TessdataManager *init_classifier,
TessdataManager *init_dict);
void cc_recog(WERD_RES *word);
void program_editdown(int32_t elasped_time);
void set_pass1();
void set_pass2();
int end_recog();
BLOB_CHOICE_LIST *call_matcher(TBLOB* blob);
int dict_word(const WERD_CHOICE &word);
// wordclass.cpp
BLOB_CHOICE_LIST *classify_blob(TBLOB *blob,
const char *string,
C_COL color,
BlamerBundle *blamer_bundle);
// segsearch.cpp
// SegSearch works on the lower diagonal matrix of BLOB_CHOICE_LISTs.
// Each entry in the matrix represents the classification choice
// for a chunk, i.e. an entry in row 2, column 1 represents the list
// of ratings for the chunks 1 and 2 classified as a single blob.
// The entries on the diagonal of the matrix are classifier choice lists
// for a single chunk from the maximal segmentation.
//
// The ratings matrix given to SegSearch represents the segmentation
// graph / trellis for the current word. The nodes in the graph are the
// individual BLOB_CHOICEs in each of the BLOB_CHOICE_LISTs in the ratings
// matrix. The children of each node (nodes connected by outgoing links)
// are the entries in the column that is equal to node's row+1. The parents
// (nodes connected by the incoming links) are the entries in the row that
// is equal to the node's column-1. Here is an example ratings matrix:
//
// 0 1 2 3 4
// -------------------------
// 0| c,( |
// 1| d l,1 |
// 2| o |
// 3| c,( |
// 4| g,y l,1 |
// -------------------------
//
// In the example above node "o" has children (outgoing connection to nodes)
// "c","(","g","y" and parents (incoming connections from nodes) "l","1","d".
//
// The objective of the search is to find the least cost path, where the cost
// is determined by the language model components and the properties of the
// cut between the blobs on the path. SegSearch starts by populating the
// matrix with the all the entries that were classified by the chopper and
// finding the initial best path. Based on the classifier ratings, language
// model scores and the properties of each cut, a list of "pain points" is
// constructed - those are the points on the path where the choices do not
// look consistent with the neighboring choices, the cuts look particularly
// problematic, or the certainties of the blobs are low. The most troublesome
// "pain point" is picked from the list and the new entry in the ratings
// matrix corresponding to this "pain point" is filled in. Then the language
// model state is updated to reflect the new classification and the new
// "pain points" are added to the list and the next most troublesome
// "pain point" is determined. This continues until either the word choice
// composed from the best paths in the segmentation graph is "good enough"
// (e.g. above a certain certainty threshold, is an unambiguous dictionary
// word, etc) or there are no more "pain points" to explore.
//
// If associate_blobs is set to false no new classifications will be done
// to combine blobs. Segmentation search will run only one "iteration"
// on the classifications already recorded in chunks_record.ratings.
//
// Note: this function assumes that word_res, best_choice_bundle arguments
// are not nullptr.
void SegSearch(WERD_RES* word_res,
BestChoiceBundle* best_choice_bundle,
BlamerBundle* blamer_bundle);
// Setup and run just the initial segsearch on an established matrix,
// without doing any additional chopping or joining.
// (Internal factored version that can be used as part of the main SegSearch.)
void InitialSegSearch(WERD_RES* word_res, LMPainPoints* pain_points,
GenericVector<SegSearchPending>* pending,
BestChoiceBundle* best_choice_bundle,
BlamerBundle* blamer_bundle);
// Runs SegSearch() function (above) without needing a best_choice_bundle
// or blamer_bundle. Used for testing.
void DoSegSearch(WERD_RES* word_res);
// chop.cpp
PRIORITY point_priority(EDGEPT *point);
void add_point_to_list(PointHeap* point_heap, EDGEPT *point);
// Returns true if the edgept supplied as input is an inside angle. This
// is determined by the angular change of the vectors from point to point.
bool is_inside_angle(EDGEPT *pt);
int angle_change(EDGEPT *point1, EDGEPT *point2, EDGEPT *point3);
EDGEPT *pick_close_point(EDGEPT *critical_point,
EDGEPT *vertical_point,
int *best_dist);
void prioritize_points(TESSLINE *outline, PointHeap* points);
void new_min_point(EDGEPT *local_min, PointHeap* points);
void new_max_point(EDGEPT *local_max, PointHeap* points);
void vertical_projection_point(EDGEPT *split_point, EDGEPT *target_point,
EDGEPT** best_point,
EDGEPT_CLIST *new_points);
// chopper.cpp
SEAM *attempt_blob_chop(TWERD *word, TBLOB *blob, int32_t blob_number,
bool italic_blob, const GenericVector<SEAM*>& seams);
SEAM *chop_numbered_blob(TWERD *word, int32_t blob_number,
bool italic_blob, const GenericVector<SEAM*>& seams);
SEAM *chop_overlapping_blob(const GenericVector<TBOX>& boxes,
bool italic_blob,
WERD_RES *word_res, int *blob_number);
SEAM *improve_one_blob(const GenericVector<BLOB_CHOICE*> &blob_choices,
DANGERR *fixpt,
bool split_next_to_fragment,
bool italic_blob,
WERD_RES *word,
int *blob_number);
SEAM *chop_one_blob(const GenericVector<TBOX> &boxes,
const GenericVector<BLOB_CHOICE*> &blob_choices,
WERD_RES *word_res,
int *blob_number);
void chop_word_main(WERD_RES *word);
void improve_by_chopping(float rating_cert_scale,
WERD_RES *word,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle,
LMPainPoints *pain_points,
GenericVector<SegSearchPending>* pending);
int select_blob_to_split(const GenericVector<BLOB_CHOICE*> &blob_choices,
float rating_ceiling,
bool split_next_to_fragment);
int select_blob_to_split_from_fixpt(DANGERR *fixpt);
// findseam.cpp
void add_seam_to_queue(float new_priority, SEAM *new_seam, SeamQueue* seams);
void choose_best_seam(SeamQueue *seam_queue, const SPLIT *split,
PRIORITY priority, SEAM **seam_result, TBLOB *blob,
SeamPile *seam_pile);
void combine_seam(const SeamPile& seam_pile,
const SEAM* seam, SeamQueue* seam_queue);
SEAM *pick_good_seam(TBLOB *blob);
void try_point_pairs (EDGEPT * points[MAX_NUM_POINTS],
int16_t num_points,
SeamQueue* seam_queue,
SeamPile* seam_pile,
SEAM ** seam, TBLOB * blob);
void try_vertical_splits(EDGEPT * points[MAX_NUM_POINTS],
int16_t num_points,
EDGEPT_CLIST *new_points,
SeamQueue* seam_queue,
SeamPile* seam_pile,
SEAM ** seam, TBLOB * blob);
// gradechop.cpp
PRIORITY grade_split_length(register SPLIT *split);
PRIORITY grade_sharpness(register SPLIT *split);
// outlines.cpp
bool near_point(EDGEPT *point, EDGEPT *line_pt_0, EDGEPT *line_pt_1,
EDGEPT **near_pt);
// pieces.cpp
virtual BLOB_CHOICE_LIST *classify_piece(const GenericVector<SEAM*>& seams,
int16_t start,
int16_t end,
const char* description,
TWERD *word,
BlamerBundle *blamer_bundle);
// Try to merge fragments in the ratings matrix and put the result in
// the corresponding row and column
void merge_fragments(MATRIX *ratings,
int16_t num_blobs);
// Recursively go through the ratings matrix to find lists of fragments
// to be merged in the function merge_and_put_fragment_lists.
// current_frag is the position of the piece we are looking for.
// current_row is the row in the rating matrix we are currently at.
// start is the row we started initially, so that we can know where
// to append the results to the matrix. num_frag_parts is the total
// number of pieces we are looking for and num_blobs is the size of the
// ratings matrix.
void get_fragment_lists(int16_t current_frag,
int16_t current_row,
int16_t start,
int16_t num_frag_parts,
int16_t num_blobs,
MATRIX *ratings,
BLOB_CHOICE_LIST *choice_lists);
// Merge the fragment lists in choice_lists and append it to the
// ratings matrix
void merge_and_put_fragment_lists(int16_t row,
int16_t column,
int16_t num_frag_parts,
BLOB_CHOICE_LIST *choice_lists,
MATRIX *ratings);
// Filter the fragment list so that the filtered_choices only contain
// fragments that are in the correct position. choices is the list
// that we are going to filter. fragment_pos is the position in the
// fragment that we are looking for and num_frag_parts is the the
// total number of pieces. The result will be appended to
// filtered_choices.
void fill_filtered_fragment_list(BLOB_CHOICE_LIST *choices,
int fragment_pos,
int num_frag_parts,
BLOB_CHOICE_LIST *filtered_choices);
// Member variables.
LanguageModel *language_model_;
PRIORITY pass2_ok_split;
// Stores the best choice for the previous word in the paragraph.
// This variable is modified by PAGE_RES_IT when iterating over
// words to OCR on the page.
WERD_CHOICE *prev_word_best_choice_;
// Sums of blame reasons computed by the blamer.
GenericVector<int> blame_reasons_;
// Function used to fill char choice lattices.
void (Wordrec::*fill_lattice_)(const MATRIX &ratings,
const WERD_CHOICE_LIST &best_choices,
const UNICHARSET &unicharset,
BlamerBundle *blamer_bundle);
protected:
inline bool SegSearchDone(int num_futile_classifications) {
return (language_model_->AcceptableChoiceFound() ||
num_futile_classifications >=
segsearch_max_futile_classifications);
}
// Updates the language model state recorded for the child entries specified
// in pending[starting_col]. Enqueues the children of the updated entries
// into pending and proceeds to update (and remove from pending) all the
// remaining entries in pending[col] (col >= starting_col). Upon termination
// of this function all the pending[col] lists will be empty.
//
// The arguments:
//
// starting_col: index of the column in chunks_record->ratings from
// which the update should be started
//
// pending: list of entries listing chunks_record->ratings entries
// that should be updated
//
// pain_points: priority heap listing the pain points generated by
// the language model
//
// temp_pain_points: temporary storage for tentative pain points generated
// by the language model after a single call to LanguageModel::UpdateState()
// (the argument is passed in rather than created before each
// LanguageModel::UpdateState() call to avoid dynamic memory re-allocation)
//
// best_choice_bundle: a collection of variables that should be updated
// if a new best choice is found
//
void UpdateSegSearchNodes(
float rating_cert_scale,
int starting_col,
GenericVector<SegSearchPending>* pending,
WERD_RES *word_res,
LMPainPoints *pain_points,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Process the given pain point: classify the corresponding blob, enqueue
// new pain points to join the newly classified blob with its neighbors.
void ProcessSegSearchPainPoint(float pain_point_priority,
const MATRIX_COORD &pain_point,
const char* pain_point_type,
GenericVector<SegSearchPending>* pending,
WERD_RES *word_res,
LMPainPoints *pain_points,
BlamerBundle *blamer_bundle);
// Resets enough of the results so that the Viterbi search is re-run.
// Needed when the n-gram model is enabled, as the multi-length comparison
// implementation will re-value existing paths to worse values.
void ResetNGramSearch(WERD_RES* word_res,
BestChoiceBundle* best_choice_bundle,
GenericVector<SegSearchPending>* pending);
// Add pain points for classifying blobs on the correct segmentation path
// (so that we can evaluate correct segmentation path and discover the reason
// for incorrect result).
void InitBlamerForSegSearch(WERD_RES *word_res,
LMPainPoints *pain_points,
BlamerBundle *blamer_bundle,
STRING *blamer_debug);
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_WORDREC_H_