mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-14 08:39:27 +08:00
3dcb5c2488
Fixes #292
1353 lines
56 KiB
C++
1353 lines
56 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: imagefind.cpp
|
|
// Description: Function to find image and drawing regions in an image
|
|
// and create a corresponding list of empty blobs.
|
|
// Author: Ray Smith
|
|
// Created: Thu Mar 20 09:49:01 PDT 2008
|
|
//
|
|
// (C) Copyright 2008, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#endif
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include "imagefind.h"
|
|
#include "colpartitiongrid.h"
|
|
#include "linlsq.h"
|
|
#include "ndminx.h"
|
|
#include "statistc.h"
|
|
#include "params.h"
|
|
|
|
#include "allheaders.h"
|
|
|
|
INT_VAR(textord_tabfind_show_images, false, "Show image blobs");
|
|
|
|
namespace tesseract {
|
|
|
|
// Fraction of width or height of on pixels that can be discarded from a
|
|
// roughly rectangular image.
|
|
const double kMinRectangularFraction = 0.125;
|
|
// Fraction of width or height to consider image completely used.
|
|
const double kMaxRectangularFraction = 0.75;
|
|
// Fraction of width or height to allow transition from kMinRectangularFraction
|
|
// to kMaxRectangularFraction, equivalent to a dy/dx skew.
|
|
const double kMaxRectangularGradient = 0.1; // About 6 degrees.
|
|
// Minimum image size to be worth looking for images on.
|
|
const int kMinImageFindSize = 100;
|
|
// Scale factor for the rms color fit error.
|
|
const double kRMSFitScaling = 8.0;
|
|
// Min color difference to call it two colors.
|
|
const int kMinColorDifference = 16;
|
|
// Pixel padding for noise blobs and partitions when rendering on the image
|
|
// mask to encourage them to join together. Make it too big and images
|
|
// will fatten out too much and have to be clipped to text.
|
|
const int kNoisePadding = 4;
|
|
|
|
// Finds image regions within the BINARY source pix (page image) and returns
|
|
// the image regions as a mask image.
|
|
// The returned pix may be NULL, meaning no images found.
|
|
// If not NULL, it must be PixDestroyed by the caller.
|
|
Pix* ImageFind::FindImages(Pix* pix) {
|
|
// Not worth looking at small images.
|
|
if (pixGetWidth(pix) < kMinImageFindSize ||
|
|
pixGetHeight(pix) < kMinImageFindSize)
|
|
return pixCreate(pixGetWidth(pix), pixGetHeight(pix), 1);
|
|
|
|
// Reduce by factor 2.
|
|
Pix *pixr = pixReduceRankBinaryCascade(pix, 1, 0, 0, 0);
|
|
pixDisplayWrite(pixr, textord_tabfind_show_images);
|
|
|
|
// Get the halftone mask directly from Leptonica.
|
|
//
|
|
// Leptonica will print an error message and return NULL if we call
|
|
// pixGenHalftoneMask(pixr, NULL, ...) with too small image, so we
|
|
// want to bypass that.
|
|
if (pixGetWidth(pixr) < kMinImageFindSize ||
|
|
pixGetHeight(pixr) < kMinImageFindSize) {
|
|
pixDestroy(&pixr);
|
|
return pixCreate(pixGetWidth(pix), pixGetHeight(pix), 1);
|
|
}
|
|
l_int32 ht_found = 0;
|
|
Pix *pixht2 = pixGenHalftoneMask(pixr, NULL, &ht_found,
|
|
textord_tabfind_show_images);
|
|
pixDestroy(&pixr);
|
|
if (!ht_found && pixht2 != NULL)
|
|
pixDestroy(&pixht2);
|
|
if (pixht2 == NULL)
|
|
return pixCreate(pixGetWidth(pix), pixGetHeight(pix), 1);
|
|
|
|
// Expand back up again.
|
|
Pix *pixht = pixExpandReplicate(pixht2, 2);
|
|
pixDisplayWrite(pixht, textord_tabfind_show_images);
|
|
pixDestroy(&pixht2);
|
|
|
|
// Fill to capture pixels near the mask edges that were missed
|
|
Pix *pixt = pixSeedfillBinary(NULL, pixht, pix, 8);
|
|
pixOr(pixht, pixht, pixt);
|
|
pixDestroy(&pixt);
|
|
|
|
// Eliminate lines and bars that may be joined to images.
|
|
Pix* pixfinemask = pixReduceRankBinaryCascade(pixht, 1, 1, 3, 3);
|
|
pixDilateBrick(pixfinemask, pixfinemask, 5, 5);
|
|
pixDisplayWrite(pixfinemask, textord_tabfind_show_images);
|
|
Pix* pixreduced = pixReduceRankBinaryCascade(pixht, 1, 1, 1, 1);
|
|
Pix* pixreduced2 = pixReduceRankBinaryCascade(pixreduced, 3, 3, 3, 0);
|
|
pixDestroy(&pixreduced);
|
|
pixDilateBrick(pixreduced2, pixreduced2, 5, 5);
|
|
Pix* pixcoarsemask = pixExpandReplicate(pixreduced2, 8);
|
|
pixDestroy(&pixreduced2);
|
|
pixDisplayWrite(pixcoarsemask, textord_tabfind_show_images);
|
|
// Combine the coarse and fine image masks.
|
|
pixAnd(pixcoarsemask, pixcoarsemask, pixfinemask);
|
|
pixDestroy(&pixfinemask);
|
|
// Dilate a bit to make sure we get everything.
|
|
pixDilateBrick(pixcoarsemask, pixcoarsemask, 3, 3);
|
|
Pix* pixmask = pixExpandReplicate(pixcoarsemask, 16);
|
|
pixDestroy(&pixcoarsemask);
|
|
if (textord_tabfind_show_images)
|
|
pixWrite("junkexpandedcoarsemask.png", pixmask, IFF_PNG);
|
|
// And the image mask with the line and bar remover.
|
|
pixAnd(pixht, pixht, pixmask);
|
|
pixDestroy(&pixmask);
|
|
if (textord_tabfind_show_images)
|
|
pixWrite("junkfinalimagemask.png", pixht, IFF_PNG);
|
|
// Make the result image the same size as the input.
|
|
Pix* result = pixCreate(pixGetWidth(pix), pixGetHeight(pix), 1);
|
|
pixOr(result, result, pixht);
|
|
pixDestroy(&pixht);
|
|
return result;
|
|
}
|
|
|
|
// Generates a Boxa, Pixa pair from the input binary (image mask) pix,
|
|
// analgous to pixConnComp, except that connected components which are nearly
|
|
// rectangular are replaced with solid rectangles.
|
|
// The returned boxa, pixa may be NULL, meaning no images found.
|
|
// If not NULL, they must be destroyed by the caller.
|
|
// Resolution of pix should match the source image (Tesseract::pix_binary_)
|
|
// so the output coordinate systems match.
|
|
void ImageFind::ConnCompAndRectangularize(Pix* pix, Boxa** boxa, Pixa** pixa) {
|
|
*boxa = NULL;
|
|
*pixa = NULL;
|
|
|
|
if (textord_tabfind_show_images)
|
|
pixWrite("junkconncompimage.png", pix, IFF_PNG);
|
|
// Find the individual image regions in the mask image.
|
|
*boxa = pixConnComp(pix, pixa, 8);
|
|
// Rectangularize the individual images. If a sharp edge in vertical and/or
|
|
// horizontal occupancy can be found, it indicates a probably rectangular
|
|
// image with unwanted bits merged on, so clip to the approximate rectangle.
|
|
int npixes = pixaGetCount(*pixa);
|
|
for (int i = 0; i < npixes; ++i) {
|
|
int x_start, x_end, y_start, y_end;
|
|
Pix* img_pix = pixaGetPix(*pixa, i, L_CLONE);
|
|
pixDisplayWrite(img_pix, textord_tabfind_show_images);
|
|
if (pixNearlyRectangular(img_pix, kMinRectangularFraction,
|
|
kMaxRectangularFraction,
|
|
kMaxRectangularGradient,
|
|
&x_start, &y_start, &x_end, &y_end)) {
|
|
Pix* simple_pix = pixCreate(x_end - x_start, y_end - y_start, 1);
|
|
pixSetAll(simple_pix);
|
|
pixDestroy(&img_pix);
|
|
// pixaReplacePix takes ownership of the simple_pix.
|
|
pixaReplacePix(*pixa, i, simple_pix, NULL);
|
|
img_pix = pixaGetPix(*pixa, i, L_CLONE);
|
|
// Fix the box to match the new pix.
|
|
l_int32 x, y, width, height;
|
|
boxaGetBoxGeometry(*boxa, i, &x, &y, &width, &height);
|
|
Box* simple_box = boxCreate(x + x_start, y + y_start,
|
|
x_end - x_start, y_end - y_start);
|
|
boxaReplaceBox(*boxa, i, simple_box);
|
|
}
|
|
pixDestroy(&img_pix);
|
|
}
|
|
}
|
|
|
|
// Scans horizontally on x=[x_start,x_end), starting with y=*y_start,
|
|
// stepping y+=y_step, until y=y_end. *ystart is input/output.
|
|
// If the number of black pixels in a row, pix_count fits this pattern:
|
|
// 0 or more rows with pix_count < min_count then
|
|
// <= mid_width rows with min_count <= pix_count <= max_count then
|
|
// a row with pix_count > max_count then
|
|
// true is returned, and *y_start = the first y with pix_count >= min_count.
|
|
static bool HScanForEdge(uinT32* data, int wpl, int x_start, int x_end,
|
|
int min_count, int mid_width, int max_count,
|
|
int y_end, int y_step, int* y_start) {
|
|
int mid_rows = 0;
|
|
for (int y = *y_start; y != y_end; y += y_step) {
|
|
// Need pixCountPixelsInRow(pix, y, &pix_count, NULL) to count in a subset.
|
|
int pix_count = 0;
|
|
uinT32* line = data + wpl * y;
|
|
for (int x = x_start; x < x_end; ++x) {
|
|
if (GET_DATA_BIT(line, x))
|
|
++pix_count;
|
|
}
|
|
if (mid_rows == 0 && pix_count < min_count)
|
|
continue; // In the min phase.
|
|
if (mid_rows == 0)
|
|
*y_start = y; // Save the y_start where we came out of the min phase.
|
|
if (pix_count > max_count)
|
|
return true; // Found the pattern.
|
|
++mid_rows;
|
|
if (mid_rows > mid_width)
|
|
break; // Middle too big.
|
|
}
|
|
return false; // Never found max_count.
|
|
}
|
|
|
|
// Scans vertically on y=[y_start,y_end), starting with x=*x_start,
|
|
// stepping x+=x_step, until x=x_end. *x_start is input/output.
|
|
// If the number of black pixels in a column, pix_count fits this pattern:
|
|
// 0 or more cols with pix_count < min_count then
|
|
// <= mid_width cols with min_count <= pix_count <= max_count then
|
|
// a column with pix_count > max_count then
|
|
// true is returned, and *x_start = the first x with pix_count >= min_count.
|
|
static bool VScanForEdge(uinT32* data, int wpl, int y_start, int y_end,
|
|
int min_count, int mid_width, int max_count,
|
|
int x_end, int x_step, int* x_start) {
|
|
int mid_cols = 0;
|
|
for (int x = *x_start; x != x_end; x += x_step) {
|
|
int pix_count = 0;
|
|
uinT32* line = data + y_start * wpl;
|
|
for (int y = y_start; y < y_end; ++y, line += wpl) {
|
|
if (GET_DATA_BIT(line, x))
|
|
++pix_count;
|
|
}
|
|
if (mid_cols == 0 && pix_count < min_count)
|
|
continue; // In the min phase.
|
|
if (mid_cols == 0)
|
|
*x_start = x; // Save the place where we came out of the min phase.
|
|
if (pix_count > max_count)
|
|
return true; // found the pattern.
|
|
++mid_cols;
|
|
if (mid_cols > mid_width)
|
|
break; // Middle too big.
|
|
}
|
|
return false; // Never found max_count.
|
|
}
|
|
|
|
// Returns true if there is a rectangle in the source pix, such that all
|
|
// pixel rows and column slices outside of it have less than
|
|
// min_fraction of the pixels black, and within max_skew_gradient fraction
|
|
// of the pixels on the inside, there are at least max_fraction of the
|
|
// pixels black. In other words, the inside of the rectangle looks roughly
|
|
// rectangular, and the outside of it looks like extra bits.
|
|
// On return, the rectangle is defined by x_start, y_start, x_end and y_end.
|
|
// Note: the algorithm is iterative, allowing it to slice off pixels from
|
|
// one edge, allowing it to then slice off more pixels from another edge.
|
|
bool ImageFind::pixNearlyRectangular(Pix* pix,
|
|
double min_fraction, double max_fraction,
|
|
double max_skew_gradient,
|
|
int* x_start, int* y_start,
|
|
int* x_end, int* y_end) {
|
|
ASSERT_HOST(pix != NULL);
|
|
*x_start = 0;
|
|
*x_end = pixGetWidth(pix);
|
|
*y_start = 0;
|
|
*y_end = pixGetHeight(pix);
|
|
|
|
uinT32* data = pixGetData(pix);
|
|
int wpl = pixGetWpl(pix);
|
|
bool any_cut = false;
|
|
bool left_done = false;
|
|
bool right_done = false;
|
|
bool top_done = false;
|
|
bool bottom_done = false;
|
|
do {
|
|
any_cut = false;
|
|
// Find the top/bottom edges.
|
|
int width = *x_end - *x_start;
|
|
int min_count = static_cast<int>(width * min_fraction);
|
|
int max_count = static_cast<int>(width * max_fraction);
|
|
int edge_width = static_cast<int>(width * max_skew_gradient);
|
|
if (HScanForEdge(data, wpl, *x_start, *x_end, min_count, edge_width,
|
|
max_count, *y_end, 1, y_start) && !top_done) {
|
|
top_done = true;
|
|
any_cut = true;
|
|
}
|
|
--(*y_end);
|
|
if (HScanForEdge(data, wpl, *x_start, *x_end, min_count, edge_width,
|
|
max_count, *y_start, -1, y_end) && !bottom_done) {
|
|
bottom_done = true;
|
|
any_cut = true;
|
|
}
|
|
++(*y_end);
|
|
|
|
// Find the left/right edges.
|
|
int height = *y_end - *y_start;
|
|
min_count = static_cast<int>(height * min_fraction);
|
|
max_count = static_cast<int>(height * max_fraction);
|
|
edge_width = static_cast<int>(height * max_skew_gradient);
|
|
if (VScanForEdge(data, wpl, *y_start, *y_end, min_count, edge_width,
|
|
max_count, *x_end, 1, x_start) && !left_done) {
|
|
left_done = true;
|
|
any_cut = true;
|
|
}
|
|
--(*x_end);
|
|
if (VScanForEdge(data, wpl, *y_start, *y_end, min_count, edge_width,
|
|
max_count, *x_start, -1, x_end) && !right_done) {
|
|
right_done = true;
|
|
any_cut = true;
|
|
}
|
|
++(*x_end);
|
|
} while (any_cut);
|
|
|
|
// All edges must satisfy the condition of sharp gradient in pixel density
|
|
// in order for the full rectangle to be present.
|
|
return left_done && right_done && top_done && bottom_done;
|
|
}
|
|
|
|
// Given an input pix, and a bounding rectangle, the sides of the rectangle
|
|
// are shrunk inwards until they bound any black pixels found within the
|
|
// original rectangle. Returns false if the rectangle contains no black
|
|
// pixels at all.
|
|
bool ImageFind::BoundsWithinRect(Pix* pix, int* x_start, int* y_start,
|
|
int* x_end, int* y_end) {
|
|
Box* input_box = boxCreate(*x_start, *y_start, *x_end - *x_start,
|
|
*y_end - *y_start);
|
|
Box* output_box = NULL;
|
|
pixClipBoxToForeground(pix, input_box, NULL, &output_box);
|
|
bool result = output_box != NULL;
|
|
if (result) {
|
|
l_int32 x, y, width, height;
|
|
boxGetGeometry(output_box, &x, &y, &width, &height);
|
|
*x_start = x;
|
|
*y_start = y;
|
|
*x_end = x + width;
|
|
*y_end = y + height;
|
|
boxDestroy(&output_box);
|
|
}
|
|
boxDestroy(&input_box);
|
|
return result;
|
|
}
|
|
|
|
// Given a point in 3-D (RGB) space, returns the squared Euclidean distance
|
|
// of the point from the given line, defined by a pair of points in the 3-D
|
|
// (RGB) space, line1 and line2.
|
|
double ImageFind::ColorDistanceFromLine(const uinT8* line1,
|
|
const uinT8* line2,
|
|
const uinT8* point) {
|
|
int line_vector[kRGBRMSColors];
|
|
int point_vector[kRGBRMSColors];
|
|
for (int i = 0; i < kRGBRMSColors; ++i) {
|
|
line_vector[i] = static_cast<int>(line2[i]) - static_cast<int>(line1[i]);
|
|
point_vector[i] = static_cast<int>(point[i]) - static_cast<int>(line1[i]);
|
|
}
|
|
line_vector[L_ALPHA_CHANNEL] = 0;
|
|
// Now the cross product in 3d.
|
|
int cross[kRGBRMSColors];
|
|
cross[COLOR_RED] = line_vector[COLOR_GREEN] * point_vector[COLOR_BLUE]
|
|
- line_vector[COLOR_BLUE] * point_vector[COLOR_GREEN];
|
|
cross[COLOR_GREEN] = line_vector[COLOR_BLUE] * point_vector[COLOR_RED]
|
|
- line_vector[COLOR_RED] * point_vector[COLOR_BLUE];
|
|
cross[COLOR_BLUE] = line_vector[COLOR_RED] * point_vector[COLOR_GREEN]
|
|
- line_vector[COLOR_GREEN] * point_vector[COLOR_RED];
|
|
cross[L_ALPHA_CHANNEL] = 0;
|
|
// Now the sums of the squares.
|
|
double cross_sq = 0.0;
|
|
double line_sq = 0.0;
|
|
for (int j = 0; j < kRGBRMSColors; ++j) {
|
|
cross_sq += static_cast<double>(cross[j]) * cross[j];
|
|
line_sq += static_cast<double>(line_vector[j]) * line_vector[j];
|
|
}
|
|
if (line_sq == 0.0) {
|
|
return 0.0;
|
|
}
|
|
return cross_sq / line_sq; // This is the squared distance.
|
|
}
|
|
|
|
|
|
// Returns the leptonica combined code for the given RGB triplet.
|
|
uinT32 ImageFind::ComposeRGB(uinT32 r, uinT32 g, uinT32 b) {
|
|
l_uint32 result;
|
|
composeRGBPixel(r, g, b, &result);
|
|
return result;
|
|
}
|
|
|
|
// Returns the input value clipped to a uinT8.
|
|
uinT8 ImageFind::ClipToByte(double pixel) {
|
|
if (pixel < 0.0)
|
|
return 0;
|
|
else if (pixel >= 255.0)
|
|
return 255;
|
|
return static_cast<uinT8>(pixel);
|
|
}
|
|
|
|
// Computes the light and dark extremes of color in the given rectangle of
|
|
// the given pix, which is factor smaller than the coordinate system in rect.
|
|
// The light and dark points are taken to be the upper and lower 8th-ile of
|
|
// the most deviant of R, G and B. The value of the other 2 channels are
|
|
// computed by linear fit against the most deviant.
|
|
// The colors of the two points are returned in color1 and color2, with the
|
|
// alpha channel set to a scaled mean rms of the fits.
|
|
// If color_map1 is not null then it and color_map2 get rect pasted in them
|
|
// with the two calculated colors, and rms map gets a pasted rect of the rms.
|
|
// color_map1, color_map2 and rms_map are assumed to be the same scale as pix.
|
|
void ImageFind::ComputeRectangleColors(const TBOX& rect, Pix* pix, int factor,
|
|
Pix* color_map1, Pix* color_map2,
|
|
Pix* rms_map,
|
|
uinT8* color1, uinT8* color2) {
|
|
ASSERT_HOST(pix != NULL && pixGetDepth(pix) == 32);
|
|
// Pad the rectangle outwards by 2 (scaled) pixels if possible to get more
|
|
// background.
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
int left_pad = MAX(rect.left() - 2 * factor, 0) / factor;
|
|
int top_pad = (rect.top() + 2 * factor + (factor - 1)) / factor;
|
|
top_pad = MIN(height, top_pad);
|
|
int right_pad = (rect.right() + 2 * factor + (factor - 1)) / factor;
|
|
right_pad = MIN(width, right_pad);
|
|
int bottom_pad = MAX(rect.bottom() - 2 * factor, 0) / factor;
|
|
int width_pad = right_pad - left_pad;
|
|
int height_pad = top_pad - bottom_pad;
|
|
if (width_pad < 1 || height_pad < 1 || width_pad + height_pad < 4)
|
|
return;
|
|
// Now crop the pix to the rectangle.
|
|
Box* scaled_box = boxCreate(left_pad, height - top_pad,
|
|
width_pad, height_pad);
|
|
Pix* scaled = pixClipRectangle(pix, scaled_box, NULL);
|
|
|
|
// Compute stats over the whole image.
|
|
STATS red_stats(0, 256);
|
|
STATS green_stats(0, 256);
|
|
STATS blue_stats(0, 256);
|
|
uinT32* data = pixGetData(scaled);
|
|
ASSERT_HOST(pixGetWpl(scaled) == width_pad);
|
|
for (int y = 0; y < height_pad; ++y) {
|
|
for (int x = 0; x < width_pad; ++x, ++data) {
|
|
int r = GET_DATA_BYTE(data, COLOR_RED);
|
|
int g = GET_DATA_BYTE(data, COLOR_GREEN);
|
|
int b = GET_DATA_BYTE(data, COLOR_BLUE);
|
|
red_stats.add(r, 1);
|
|
green_stats.add(g, 1);
|
|
blue_stats.add(b, 1);
|
|
}
|
|
}
|
|
// Find the RGB component with the greatest 8th-ile-range.
|
|
// 8th-iles are used instead of quartiles to get closer to the true
|
|
// foreground color, which is going to be faint at best because of the
|
|
// pre-scaling of the input image.
|
|
int best_l8 = static_cast<int>(red_stats.ile(0.125f));
|
|
int best_u8 = static_cast<int>(ceil(red_stats.ile(0.875f)));
|
|
int best_i8r = best_u8 - best_l8;
|
|
int x_color = COLOR_RED;
|
|
int y1_color = COLOR_GREEN;
|
|
int y2_color = COLOR_BLUE;
|
|
int l8 = static_cast<int>(green_stats.ile(0.125f));
|
|
int u8 = static_cast<int>(ceil(green_stats.ile(0.875f)));
|
|
if (u8 - l8 > best_i8r) {
|
|
best_i8r = u8 - l8;
|
|
best_l8 = l8;
|
|
best_u8 = u8;
|
|
x_color = COLOR_GREEN;
|
|
y1_color = COLOR_RED;
|
|
}
|
|
l8 = static_cast<int>(blue_stats.ile(0.125f));
|
|
u8 = static_cast<int>(ceil(blue_stats.ile(0.875f)));
|
|
if (u8 - l8 > best_i8r) {
|
|
best_i8r = u8 - l8;
|
|
best_l8 = l8;
|
|
best_u8 = u8;
|
|
x_color = COLOR_BLUE;
|
|
y1_color = COLOR_GREEN;
|
|
y2_color = COLOR_RED;
|
|
}
|
|
if (best_i8r >= kMinColorDifference) {
|
|
LLSQ line1;
|
|
LLSQ line2;
|
|
uinT32* data = pixGetData(scaled);
|
|
for (int im_y = 0; im_y < height_pad; ++im_y) {
|
|
for (int im_x = 0; im_x < width_pad; ++im_x, ++data) {
|
|
int x = GET_DATA_BYTE(data, x_color);
|
|
int y1 = GET_DATA_BYTE(data, y1_color);
|
|
int y2 = GET_DATA_BYTE(data, y2_color);
|
|
line1.add(x, y1);
|
|
line2.add(x, y2);
|
|
}
|
|
}
|
|
double m1 = line1.m();
|
|
double c1 = line1.c(m1);
|
|
double m2 = line2.m();
|
|
double c2 = line2.c(m2);
|
|
double rms = line1.rms(m1, c1) + line2.rms(m2, c2);
|
|
rms *= kRMSFitScaling;
|
|
// Save the results.
|
|
color1[x_color] = ClipToByte(best_l8);
|
|
color1[y1_color] = ClipToByte(m1 * best_l8 + c1 + 0.5);
|
|
color1[y2_color] = ClipToByte(m2 * best_l8 + c2 + 0.5);
|
|
color1[L_ALPHA_CHANNEL] = ClipToByte(rms);
|
|
color2[x_color] = ClipToByte(best_u8);
|
|
color2[y1_color] = ClipToByte(m1 * best_u8 + c1 + 0.5);
|
|
color2[y2_color] = ClipToByte(m2 * best_u8 + c2 + 0.5);
|
|
color2[L_ALPHA_CHANNEL] = ClipToByte(rms);
|
|
} else {
|
|
// There is only one color.
|
|
color1[COLOR_RED] = ClipToByte(red_stats.median());
|
|
color1[COLOR_GREEN] = ClipToByte(green_stats.median());
|
|
color1[COLOR_BLUE] = ClipToByte(blue_stats.median());
|
|
color1[L_ALPHA_CHANNEL] = 0;
|
|
memcpy(color2, color1, 4);
|
|
}
|
|
if (color_map1 != NULL) {
|
|
pixSetInRectArbitrary(color_map1, scaled_box,
|
|
ComposeRGB(color1[COLOR_RED],
|
|
color1[COLOR_GREEN],
|
|
color1[COLOR_BLUE]));
|
|
pixSetInRectArbitrary(color_map2, scaled_box,
|
|
ComposeRGB(color2[COLOR_RED],
|
|
color2[COLOR_GREEN],
|
|
color2[COLOR_BLUE]));
|
|
pixSetInRectArbitrary(rms_map, scaled_box, color1[L_ALPHA_CHANNEL]);
|
|
}
|
|
pixDestroy(&scaled);
|
|
boxDestroy(&scaled_box);
|
|
}
|
|
|
|
// ================ CUTTING POLYGONAL IMAGES FROM A RECTANGLE ================
|
|
// The following functions are responsible for cutting a polygonal image from
|
|
// a rectangle: CountPixelsInRotatedBox, AttemptToShrinkBox, CutChunkFromParts
|
|
// with DivideImageIntoParts as the master.
|
|
// Problem statement:
|
|
// We start with a single connected component from the image mask: we get
|
|
// a Pix of the component, and its location on the page (im_box).
|
|
// The objective of cutting a polygonal image from its rectangle is to avoid
|
|
// interfering text, but not text that completely overlaps the image.
|
|
// ------------------------------ ------------------------------
|
|
// | Single input partition | | 1 Cut up output partitions |
|
|
// | | ------------------------------
|
|
// Av|oid | Avoid | |
|
|
// | | |________________________|
|
|
// Int|erfering | Interfering | |
|
|
// | | _____|__________________|
|
|
// T|ext | Text | |
|
|
// | Text-on-image | | Text-on-image |
|
|
// ------------------------------ --------------------------
|
|
// DivideImageIntoParts does this by building a ColPartition_LIST (not in the
|
|
// grid) with each ColPartition representing one of the rectangles needed,
|
|
// starting with a single rectangle for the whole image component, and cutting
|
|
// bits out of it with CutChunkFromParts as needed to avoid text. The output
|
|
// ColPartitions are supposed to be ordered from top to bottom.
|
|
|
|
// The problem is complicated by the fact that we have rotated the coordinate
|
|
// system to make text lines horizontal, so if we need to look at the component
|
|
// image, we have to rotate the coordinates. Throughout the functions in this
|
|
// section im_box is the rectangle representing the image component in the
|
|
// rotated page coordinates (where we are building our output ColPartitions),
|
|
// rotation is the rotation that we used to get there, and rerotation is the
|
|
// rotation required to get back to original page image coordinates.
|
|
// To get to coordinates in the component image, pix, we rotate the im_box,
|
|
// the point we want to locate, and subtract the rotated point from the top-left
|
|
// of the rotated im_box.
|
|
// im_box is therefore essential to calculating coordinates within the pix.
|
|
|
|
// Returns true if there are no black pixels in between the boxes.
|
|
// The im_box must represent the bounding box of the pix in tesseract
|
|
// coordinates, which may be negative, due to rotations to make the textlines
|
|
// horizontal. The boxes are rotated by rotation, which should undo such
|
|
// rotations, before mapping them onto the pix.
|
|
bool ImageFind::BlankImageInBetween(const TBOX& box1, const TBOX& box2,
|
|
const TBOX& im_box, const FCOORD& rotation,
|
|
Pix* pix) {
|
|
TBOX search_box(box1);
|
|
search_box += box2;
|
|
if (box1.x_gap(box2) >= box1.y_gap(box2)) {
|
|
if (box1.x_gap(box2) <= 0)
|
|
return true;
|
|
search_box.set_left(MIN(box1.right(), box2.right()));
|
|
search_box.set_right(MAX(box1.left(), box2.left()));
|
|
} else {
|
|
if (box1.y_gap(box2) <= 0)
|
|
return true;
|
|
search_box.set_top(MAX(box1.bottom(), box2.bottom()));
|
|
search_box.set_bottom(MIN(box1.top(), box2.top()));
|
|
}
|
|
return CountPixelsInRotatedBox(search_box, im_box, rotation, pix) == 0;
|
|
}
|
|
|
|
// Returns the number of pixels in box in the pix.
|
|
// rotation, pix and im_box are defined in the large comment above.
|
|
int ImageFind::CountPixelsInRotatedBox(TBOX box, const TBOX& im_box,
|
|
const FCOORD& rotation, Pix* pix) {
|
|
// Intersect it with the image box.
|
|
box &= im_box; // This is in-place box intersection.
|
|
if (box.null_box())
|
|
return 0;
|
|
box.rotate(rotation);
|
|
TBOX rotated_im_box(im_box);
|
|
rotated_im_box.rotate(rotation);
|
|
Pix* rect_pix = pixCreate(box.width(), box.height(), 1);
|
|
pixRasterop(rect_pix, 0, 0, box.width(), box.height(),
|
|
PIX_SRC, pix, box.left() - rotated_im_box.left(),
|
|
rotated_im_box.top() - box.top());
|
|
l_int32 result;
|
|
pixCountPixels(rect_pix, &result, NULL);
|
|
pixDestroy(&rect_pix);
|
|
return result;
|
|
}
|
|
|
|
// The box given by slice contains some black pixels, but not necessarily
|
|
// over the whole box. Shrink the x bounds of slice, but not the y bounds
|
|
// until there is at least one black pixel in the outermost columns.
|
|
// rotation, rerotation, pix and im_box are defined in the large comment above.
|
|
static void AttemptToShrinkBox(const FCOORD& rotation, const FCOORD& rerotation,
|
|
const TBOX& im_box, Pix* pix, TBOX* slice) {
|
|
TBOX rotated_box(*slice);
|
|
rotated_box.rotate(rerotation);
|
|
TBOX rotated_im_box(im_box);
|
|
rotated_im_box.rotate(rerotation);
|
|
int left = rotated_box.left() - rotated_im_box.left();
|
|
int right = rotated_box.right() - rotated_im_box.left();
|
|
int top = rotated_im_box.top() - rotated_box.top();
|
|
int bottom = rotated_im_box.top() - rotated_box.bottom();
|
|
ImageFind::BoundsWithinRect(pix, &left, &top, &right, &bottom);
|
|
top = rotated_im_box.top() - top;
|
|
bottom = rotated_im_box.top() - bottom;
|
|
left += rotated_im_box.left();
|
|
right += rotated_im_box.left();
|
|
rotated_box.set_to_given_coords(left, bottom, right, top);
|
|
rotated_box.rotate(rotation);
|
|
slice->set_left(rotated_box.left());
|
|
slice->set_right(rotated_box.right());
|
|
}
|
|
|
|
// The meat of cutting a polygonal image around text.
|
|
// This function covers the general case of cutting a box out of a box
|
|
// as shown:
|
|
// Input Output
|
|
// ------------------------------ ------------------------------
|
|
// | Single input partition | | 1 Cut up output partitions |
|
|
// | | ------------------------------
|
|
// | ---------- | --------- ----------
|
|
// | | box | | | 2 | box | 3 |
|
|
// | | | | | | is cut | |
|
|
// | ---------- | --------- out ----------
|
|
// | | ------------------------------
|
|
// | | | 4 |
|
|
// ------------------------------ ------------------------------
|
|
// In the context that this function is used, at most 3 of the above output
|
|
// boxes will be created, as the overlapping box is never contained by the
|
|
// input.
|
|
// The above cutting operation is executed for each element of part_list that
|
|
// is overlapped by the input box. Each modified ColPartition is replaced
|
|
// in place in the list by the output of the cutting operation in the order
|
|
// shown above, so iff no holes are ever created, the output will be in
|
|
// top-to-bottom order, but in extreme cases, hole creation is possible.
|
|
// In such cases, the output order may cause strange block polygons.
|
|
// rotation, rerotation, pix and im_box are defined in the large comment above.
|
|
static void CutChunkFromParts(const TBOX& box, const TBOX& im_box,
|
|
const FCOORD& rotation, const FCOORD& rerotation,
|
|
Pix* pix, ColPartition_LIST* part_list) {
|
|
ASSERT_HOST(!part_list->empty());
|
|
ColPartition_IT part_it(part_list);
|
|
do {
|
|
ColPartition* part = part_it.data();
|
|
TBOX part_box = part->bounding_box();
|
|
if (part_box.overlap(box)) {
|
|
// This part must be cut and replaced with the remains. There are
|
|
// up to 4 pieces to be made. Start with the first one and use
|
|
// add_before_stay_put. For each piece if it has no black pixels
|
|
// left, just don't make the box.
|
|
// Above box.
|
|
if (box.top() < part_box.top()) {
|
|
TBOX slice(part_box);
|
|
slice.set_bottom(box.top());
|
|
if (ImageFind::CountPixelsInRotatedBox(slice, im_box, rerotation,
|
|
pix) > 0) {
|
|
AttemptToShrinkBox(rotation, rerotation, im_box, pix, &slice);
|
|
part_it.add_before_stay_put(
|
|
ColPartition::FakePartition(slice, PT_UNKNOWN, BRT_POLYIMAGE,
|
|
BTFT_NONTEXT));
|
|
}
|
|
}
|
|
// Left of box.
|
|
if (box.left() > part_box.left()) {
|
|
TBOX slice(part_box);
|
|
slice.set_right(box.left());
|
|
if (box.top() < part_box.top())
|
|
slice.set_top(box.top());
|
|
if (box.bottom() > part_box.bottom())
|
|
slice.set_bottom(box.bottom());
|
|
if (ImageFind::CountPixelsInRotatedBox(slice, im_box, rerotation,
|
|
pix) > 0) {
|
|
AttemptToShrinkBox(rotation, rerotation, im_box, pix, &slice);
|
|
part_it.add_before_stay_put(
|
|
ColPartition::FakePartition(slice, PT_UNKNOWN, BRT_POLYIMAGE,
|
|
BTFT_NONTEXT));
|
|
}
|
|
}
|
|
// Right of box.
|
|
if (box.right() < part_box.right()) {
|
|
TBOX slice(part_box);
|
|
slice.set_left(box.right());
|
|
if (box.top() < part_box.top())
|
|
slice.set_top(box.top());
|
|
if (box.bottom() > part_box.bottom())
|
|
slice.set_bottom(box.bottom());
|
|
if (ImageFind::CountPixelsInRotatedBox(slice, im_box, rerotation,
|
|
pix) > 0) {
|
|
AttemptToShrinkBox(rotation, rerotation, im_box, pix, &slice);
|
|
part_it.add_before_stay_put(
|
|
ColPartition::FakePartition(slice, PT_UNKNOWN, BRT_POLYIMAGE,
|
|
BTFT_NONTEXT));
|
|
}
|
|
}
|
|
// Below box.
|
|
if (box.bottom() > part_box.bottom()) {
|
|
TBOX slice(part_box);
|
|
slice.set_top(box.bottom());
|
|
if (ImageFind::CountPixelsInRotatedBox(slice, im_box, rerotation,
|
|
pix) > 0) {
|
|
AttemptToShrinkBox(rotation, rerotation, im_box, pix, &slice);
|
|
part_it.add_before_stay_put(
|
|
ColPartition::FakePartition(slice, PT_UNKNOWN, BRT_POLYIMAGE,
|
|
BTFT_NONTEXT));
|
|
}
|
|
}
|
|
part->DeleteBoxes();
|
|
delete part_it.extract();
|
|
}
|
|
part_it.forward();
|
|
} while (!part_it.at_first());
|
|
}
|
|
|
|
// Starts with the bounding box of the image component and cuts it up
|
|
// so that it doesn't intersect text where possible.
|
|
// Strong fully contained horizontal text is marked as text on image,
|
|
// and does not cause a division of the image.
|
|
// For more detail see the large comment above on cutting polygonal images
|
|
// from a rectangle.
|
|
// rotation, rerotation, pix and im_box are defined in the large comment above.
|
|
static void DivideImageIntoParts(const TBOX& im_box, const FCOORD& rotation,
|
|
const FCOORD& rerotation, Pix* pix,
|
|
ColPartitionGridSearch* rectsearch,
|
|
ColPartition_LIST* part_list) {
|
|
// Add the full im_box partition to the list to begin with.
|
|
ColPartition* pix_part = ColPartition::FakePartition(im_box, PT_UNKNOWN,
|
|
BRT_RECTIMAGE,
|
|
BTFT_NONTEXT);
|
|
ColPartition_IT part_it(part_list);
|
|
part_it.add_after_then_move(pix_part);
|
|
|
|
rectsearch->StartRectSearch(im_box);
|
|
ColPartition* part;
|
|
while ((part = rectsearch->NextRectSearch()) != NULL) {
|
|
TBOX part_box = part->bounding_box();
|
|
if (part_box.contains(im_box) && part->flow() >= BTFT_CHAIN) {
|
|
// This image is completely covered by an existing text partition.
|
|
for (part_it.move_to_first(); !part_it.empty(); part_it.forward()) {
|
|
ColPartition* pix_part = part_it.extract();
|
|
pix_part->DeleteBoxes();
|
|
delete pix_part;
|
|
}
|
|
} else if (part->flow() == BTFT_STRONG_CHAIN) {
|
|
// Text intersects the box.
|
|
TBOX overlap_box = part_box.intersection(im_box);
|
|
// Intersect it with the image box.
|
|
int black_area = ImageFind::CountPixelsInRotatedBox(overlap_box, im_box,
|
|
rerotation, pix);
|
|
if (black_area * 2 < part_box.area() || !im_box.contains(part_box)) {
|
|
// Eat a piece out of the image.
|
|
// Pad it so that pieces eaten out look decent.
|
|
int padding = part->blob_type() == BRT_VERT_TEXT
|
|
? part_box.width() : part_box.height();
|
|
part_box.set_top(part_box.top() + padding / 2);
|
|
part_box.set_bottom(part_box.bottom() - padding / 2);
|
|
CutChunkFromParts(part_box, im_box, rotation, rerotation,
|
|
pix, part_list);
|
|
} else {
|
|
// Strong overlap with the black area, so call it text on image.
|
|
part->set_flow(BTFT_TEXT_ON_IMAGE);
|
|
}
|
|
}
|
|
if (part_list->empty()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for the rightmost text that overlaps vertically and is to the left
|
|
// of the given box, but within the given left limit.
|
|
static int ExpandImageLeft(const TBOX& box, int left_limit,
|
|
ColPartitionGrid* part_grid) {
|
|
ColPartitionGridSearch search(part_grid);
|
|
ColPartition* part;
|
|
// Search right to left for any text that overlaps.
|
|
search.StartSideSearch(box.left(), box.bottom(), box.top());
|
|
while ((part = search.NextSideSearch(true)) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.y_gap(box) < 0) {
|
|
if (part_box.right() > left_limit && part_box.right() < box.left())
|
|
left_limit = part_box.right();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (part != NULL) {
|
|
// Search for the nearest text up to the one we already found.
|
|
TBOX search_box(left_limit, box.bottom(), box.left(), box.top());
|
|
search.StartRectSearch(search_box);
|
|
while ((part = search.NextRectSearch()) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.y_gap(box) < 0) {
|
|
if (part_box.right() > left_limit && part_box.right() < box.left()) {
|
|
left_limit = part_box.right();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return left_limit;
|
|
}
|
|
|
|
// Search for the leftmost text that overlaps vertically and is to the right
|
|
// of the given box, but within the given right limit.
|
|
static int ExpandImageRight(const TBOX& box, int right_limit,
|
|
ColPartitionGrid* part_grid) {
|
|
ColPartitionGridSearch search(part_grid);
|
|
ColPartition* part;
|
|
// Search left to right for any text that overlaps.
|
|
search.StartSideSearch(box.right(), box.bottom(), box.top());
|
|
while ((part = search.NextSideSearch(false)) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.y_gap(box) < 0) {
|
|
if (part_box.left() < right_limit && part_box.left() > box.right())
|
|
right_limit = part_box.left();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (part != NULL) {
|
|
// Search for the nearest text up to the one we already found.
|
|
TBOX search_box(box.left(), box.bottom(), right_limit, box.top());
|
|
search.StartRectSearch(search_box);
|
|
while ((part = search.NextRectSearch()) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.y_gap(box) < 0) {
|
|
if (part_box.left() < right_limit && part_box.left() > box.right())
|
|
right_limit = part_box.left();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return right_limit;
|
|
}
|
|
|
|
// Search for the topmost text that overlaps horizontally and is below
|
|
// the given box, but within the given bottom limit.
|
|
static int ExpandImageBottom(const TBOX& box, int bottom_limit,
|
|
ColPartitionGrid* part_grid) {
|
|
ColPartitionGridSearch search(part_grid);
|
|
ColPartition* part;
|
|
// Search right to left for any text that overlaps.
|
|
search.StartVerticalSearch(box.left(), box.right(), box.bottom());
|
|
while ((part = search.NextVerticalSearch(true)) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.x_gap(box) < 0) {
|
|
if (part_box.top() > bottom_limit && part_box.top() < box.bottom())
|
|
bottom_limit = part_box.top();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (part != NULL) {
|
|
// Search for the nearest text up to the one we already found.
|
|
TBOX search_box(box.left(), bottom_limit, box.right(), box.bottom());
|
|
search.StartRectSearch(search_box);
|
|
while ((part = search.NextRectSearch()) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.x_gap(box) < 0) {
|
|
if (part_box.top() > bottom_limit && part_box.top() < box.bottom())
|
|
bottom_limit = part_box.top();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return bottom_limit;
|
|
}
|
|
|
|
// Search for the bottommost text that overlaps horizontally and is above
|
|
// the given box, but within the given top limit.
|
|
static int ExpandImageTop(const TBOX& box, int top_limit,
|
|
ColPartitionGrid* part_grid) {
|
|
ColPartitionGridSearch search(part_grid);
|
|
ColPartition* part;
|
|
// Search right to left for any text that overlaps.
|
|
search.StartVerticalSearch(box.left(), box.right(), box.top());
|
|
while ((part = search.NextVerticalSearch(false)) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.x_gap(box) < 0) {
|
|
if (part_box.bottom() < top_limit && part_box.bottom() > box.top())
|
|
top_limit = part_box.bottom();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (part != NULL) {
|
|
// Search for the nearest text up to the one we already found.
|
|
TBOX search_box(box.left(), box.top(), box.right(), top_limit);
|
|
search.StartRectSearch(search_box);
|
|
while ((part = search.NextRectSearch()) != NULL) {
|
|
if (part->flow() == BTFT_STRONG_CHAIN || part->flow() == BTFT_CHAIN) {
|
|
const TBOX& part_box(part->bounding_box());
|
|
if (part_box.x_gap(box) < 0) {
|
|
if (part_box.bottom() < top_limit && part_box.bottom() > box.top())
|
|
top_limit = part_box.bottom();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return top_limit;
|
|
}
|
|
|
|
// Expands the image box in the given direction until it hits text,
|
|
// limiting the expansion to the given limit box, returning the result
|
|
// in the expanded box, and
|
|
// returning the increase in area resulting from the expansion.
|
|
static int ExpandImageDir(BlobNeighbourDir dir, const TBOX& im_box,
|
|
const TBOX& limit_box,
|
|
ColPartitionGrid* part_grid, TBOX* expanded_box) {
|
|
*expanded_box = im_box;
|
|
switch (dir) {
|
|
case BND_LEFT:
|
|
expanded_box->set_left(ExpandImageLeft(im_box, limit_box.left(),
|
|
part_grid));
|
|
break;
|
|
case BND_RIGHT:
|
|
expanded_box->set_right(ExpandImageRight(im_box, limit_box.right(),
|
|
part_grid));
|
|
break;
|
|
case BND_ABOVE:
|
|
expanded_box->set_top(ExpandImageTop(im_box, limit_box.top(), part_grid));
|
|
break;
|
|
case BND_BELOW:
|
|
expanded_box->set_bottom(ExpandImageBottom(im_box, limit_box.bottom(),
|
|
part_grid));
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
return expanded_box->area() - im_box.area();
|
|
}
|
|
|
|
// Expands the image partition into any non-text until it touches text.
|
|
// The expansion proceeds in the order of increasing increase in area
|
|
// as a heuristic to find the best rectangle by expanding in the most
|
|
// constrained direction first.
|
|
static void MaximalImageBoundingBox(ColPartitionGrid* part_grid, TBOX* im_box) {
|
|
bool dunnit[BND_COUNT];
|
|
memset(dunnit, 0, sizeof(dunnit));
|
|
TBOX limit_box(part_grid->bleft().x(), part_grid->bleft().y(),
|
|
part_grid->tright().x(), part_grid->tright().y());
|
|
TBOX text_box(*im_box);
|
|
for (int iteration = 0; iteration < BND_COUNT; ++iteration) {
|
|
// Find the direction with least area increase.
|
|
int best_delta = -1;
|
|
BlobNeighbourDir best_dir = BND_LEFT;
|
|
TBOX expanded_boxes[BND_COUNT];
|
|
for (int dir = 0; dir < BND_COUNT; ++dir) {
|
|
BlobNeighbourDir bnd = static_cast<BlobNeighbourDir>(dir);
|
|
if (!dunnit[bnd]) {
|
|
TBOX expanded_box;
|
|
int area_delta = ExpandImageDir(bnd, text_box, limit_box, part_grid,
|
|
&expanded_boxes[bnd]);
|
|
if (best_delta < 0 || area_delta < best_delta) {
|
|
best_delta = area_delta;
|
|
best_dir = bnd;
|
|
}
|
|
}
|
|
}
|
|
// Run the best and remember the direction.
|
|
dunnit[best_dir] = true;
|
|
text_box = expanded_boxes[best_dir];
|
|
}
|
|
*im_box = text_box;
|
|
}
|
|
|
|
// Helper deletes the given partition but first marks up all the blobs as
|
|
// noise, so they get deleted later, and disowns them.
|
|
// If the initial type of the partition is image, then it actually deletes
|
|
// the blobs, as the partition owns them in that case.
|
|
static void DeletePartition(ColPartition* part) {
|
|
BlobRegionType type = part->blob_type();
|
|
if (type == BRT_RECTIMAGE || type == BRT_POLYIMAGE) {
|
|
// The partition owns the boxes of these types, so just delete them.
|
|
part->DeleteBoxes(); // From a previous iteration.
|
|
} else {
|
|
// Once marked, the blobs will be swept up by TidyBlobs.
|
|
part->set_flow(BTFT_NONTEXT);
|
|
part->set_blob_type(BRT_NOISE);
|
|
part->SetBlobTypes();
|
|
part->DisownBoxes(); // Created before FindImagePartitions.
|
|
}
|
|
delete part;
|
|
}
|
|
|
|
// The meat of joining fragmented images and consuming ColPartitions of
|
|
// uncertain type.
|
|
// *part_ptr is an input/output BRT_RECTIMAGE ColPartition that is to be
|
|
// expanded to consume overlapping and nearby ColPartitions of uncertain type
|
|
// and other BRT_RECTIMAGE partitions, but NOT to be expanded beyond
|
|
// max_image_box. *part_ptr is NOT in the part_grid.
|
|
// rectsearch is already constructed on the part_grid, and is used for
|
|
// searching for overlapping and nearby ColPartitions.
|
|
// ExpandImageIntoParts is called iteratively until it returns false. Each
|
|
// time it absorbs the nearest non-contained candidate, and everything that
|
|
// is fully contained within part_ptr's bounding box.
|
|
// TODO(rays) what if it just eats everything inside max_image_box in one go?
|
|
static bool ExpandImageIntoParts(const TBOX& max_image_box,
|
|
ColPartitionGridSearch* rectsearch,
|
|
ColPartitionGrid* part_grid,
|
|
ColPartition** part_ptr) {
|
|
ColPartition* image_part = *part_ptr;
|
|
TBOX im_part_box = image_part->bounding_box();
|
|
if (textord_tabfind_show_images > 1) {
|
|
tprintf("Searching for merge with image part:");
|
|
im_part_box.print();
|
|
tprintf("Text box=");
|
|
max_image_box.print();
|
|
}
|
|
rectsearch->StartRectSearch(max_image_box);
|
|
ColPartition* part;
|
|
ColPartition* best_part = NULL;
|
|
int best_dist = 0;
|
|
while ((part = rectsearch->NextRectSearch()) != NULL) {
|
|
if (textord_tabfind_show_images > 1) {
|
|
tprintf("Considering merge with part:");
|
|
part->Print();
|
|
if (im_part_box.contains(part->bounding_box()))
|
|
tprintf("Fully contained\n");
|
|
else if (!max_image_box.contains(part->bounding_box()))
|
|
tprintf("Not within text box\n");
|
|
else if (part->flow() == BTFT_STRONG_CHAIN)
|
|
tprintf("Too strong text\n");
|
|
else
|
|
tprintf("Real candidate\n");
|
|
}
|
|
if (part->flow() == BTFT_STRONG_CHAIN ||
|
|
part->flow() == BTFT_TEXT_ON_IMAGE ||
|
|
part->blob_type() == BRT_POLYIMAGE)
|
|
continue;
|
|
TBOX box = part->bounding_box();
|
|
if (max_image_box.contains(box) && part->blob_type() != BRT_NOISE) {
|
|
if (im_part_box.contains(box)) {
|
|
// Eat it completely.
|
|
rectsearch->RemoveBBox();
|
|
DeletePartition(part);
|
|
continue;
|
|
}
|
|
int x_dist = MAX(0, box.x_gap(im_part_box));
|
|
int y_dist = MAX(0, box.y_gap(im_part_box));
|
|
int dist = x_dist * x_dist + y_dist * y_dist;
|
|
if (dist > box.area() || dist > im_part_box.area())
|
|
continue; // Not close enough.
|
|
if (best_part == NULL || dist < best_dist) {
|
|
// We keep the nearest qualifier, which is not necessarily the nearest.
|
|
best_part = part;
|
|
best_dist = dist;
|
|
}
|
|
}
|
|
}
|
|
if (best_part != NULL) {
|
|
// It needs expanding. We can do it without touching text.
|
|
TBOX box = best_part->bounding_box();
|
|
if (textord_tabfind_show_images > 1) {
|
|
tprintf("Merging image part:");
|
|
im_part_box.print();
|
|
tprintf("with part:");
|
|
box.print();
|
|
}
|
|
im_part_box += box;
|
|
*part_ptr = ColPartition::FakePartition(im_part_box, PT_UNKNOWN,
|
|
BRT_RECTIMAGE,
|
|
BTFT_NONTEXT);
|
|
DeletePartition(image_part);
|
|
part_grid->RemoveBBox(best_part);
|
|
DeletePartition(best_part);
|
|
rectsearch->RepositionIterator();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Helper function to compute the overlap area between the box and the
|
|
// given list of partitions.
|
|
static int IntersectArea(const TBOX& box, ColPartition_LIST* part_list) {
|
|
int intersect_area = 0;
|
|
ColPartition_IT part_it(part_list);
|
|
// Iterate the parts and subtract intersecting area.
|
|
for (part_it.mark_cycle_pt(); !part_it.cycled_list();
|
|
part_it.forward()) {
|
|
ColPartition* image_part = part_it.data();
|
|
TBOX intersect = box.intersection(image_part->bounding_box());
|
|
intersect_area += intersect.area();
|
|
}
|
|
return intersect_area;
|
|
}
|
|
|
|
// part_list is a set of ColPartitions representing a polygonal image, and
|
|
// im_box is the union of the bounding boxes of all the parts in part_list.
|
|
// Tests whether part is to be consumed by the polygonal image.
|
|
// Returns true if part is weak text and more than half of its area is
|
|
// intersected by parts from the part_list, and it is contained within im_box.
|
|
static bool TestWeakIntersectedPart(const TBOX& im_box,
|
|
ColPartition_LIST* part_list,
|
|
ColPartition* part) {
|
|
if (part->flow() < BTFT_STRONG_CHAIN) {
|
|
// A weak partition intersects the box.
|
|
TBOX part_box = part->bounding_box();
|
|
if (im_box.contains(part_box)) {
|
|
int area = part_box.area();
|
|
int intersect_area = IntersectArea(part_box, part_list);
|
|
if (area < 2 * intersect_area) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// A rectangular or polygonal image has been completed, in part_list, bounding
|
|
// box in im_box. We want to eliminate weak text or other uncertain partitions
|
|
// (basically anything that is not BRT_STRONG_CHAIN or better) from both the
|
|
// part_grid and the big_parts list that are contained within im_box and
|
|
// overlapped enough by the possibly polygonal image.
|
|
static void EliminateWeakParts(const TBOX& im_box,
|
|
ColPartitionGrid* part_grid,
|
|
ColPartition_LIST* big_parts,
|
|
ColPartition_LIST* part_list) {
|
|
ColPartitionGridSearch rectsearch(part_grid);
|
|
ColPartition* part;
|
|
rectsearch.StartRectSearch(im_box);
|
|
while ((part = rectsearch.NextRectSearch()) != NULL) {
|
|
if (TestWeakIntersectedPart(im_box, part_list, part)) {
|
|
BlobRegionType type = part->blob_type();
|
|
if (type == BRT_POLYIMAGE || type == BRT_RECTIMAGE) {
|
|
rectsearch.RemoveBBox();
|
|
DeletePartition(part);
|
|
} else {
|
|
// The part is mostly covered, so mark it. Non-image partitions are
|
|
// kept hanging around to mark the image for pass2
|
|
part->set_flow(BTFT_NONTEXT);
|
|
part->set_blob_type(BRT_NOISE);
|
|
part->SetBlobTypes();
|
|
}
|
|
}
|
|
}
|
|
ColPartition_IT big_it(big_parts);
|
|
for (big_it.mark_cycle_pt(); !big_it.cycled_list(); big_it.forward()) {
|
|
part = big_it.data();
|
|
if (TestWeakIntersectedPart(im_box, part_list, part)) {
|
|
// Once marked, the blobs will be swept up by TidyBlobs.
|
|
DeletePartition(big_it.extract());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper scans for good text partitions overlapping the given box.
|
|
// If there are no good text partitions overlapping an expanded box, then
|
|
// the box is expanded, otherwise, the original box is returned.
|
|
// If good text overlaps the box, true is returned.
|
|
static bool ScanForOverlappingText(ColPartitionGrid* part_grid, TBOX* box) {
|
|
ColPartitionGridSearch rectsearch(part_grid);
|
|
TBOX padded_box(*box);
|
|
padded_box.pad(kNoisePadding, kNoisePadding);
|
|
rectsearch.StartRectSearch(padded_box);
|
|
ColPartition* part;
|
|
bool any_text_in_padded_rect = false;
|
|
while ((part = rectsearch.NextRectSearch()) != NULL) {
|
|
if (part->flow() == BTFT_CHAIN ||
|
|
part->flow() == BTFT_STRONG_CHAIN) {
|
|
// Text intersects the box.
|
|
any_text_in_padded_rect = true;
|
|
TBOX part_box = part->bounding_box();
|
|
if (box->overlap(part_box)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (!any_text_in_padded_rect)
|
|
*box = padded_box;
|
|
return false;
|
|
}
|
|
|
|
// Renders the boxes of image parts from the supplied list onto the image_pix,
|
|
// except where they interfere with existing strong text in the part_grid,
|
|
// and then deletes them.
|
|
// Box coordinates are rotated by rerotate to match the image.
|
|
static void MarkAndDeleteImageParts(const FCOORD& rerotate,
|
|
ColPartitionGrid* part_grid,
|
|
ColPartition_LIST* image_parts,
|
|
Pix* image_pix) {
|
|
if (image_pix == NULL)
|
|
return;
|
|
int imageheight = pixGetHeight(image_pix);
|
|
ColPartition_IT part_it(image_parts);
|
|
for (; !part_it.empty(); part_it.forward()) {
|
|
ColPartition* part = part_it.extract();
|
|
TBOX part_box = part->bounding_box();
|
|
BlobRegionType type = part->blob_type();
|
|
if (!ScanForOverlappingText(part_grid, &part_box) ||
|
|
type == BRT_RECTIMAGE || type == BRT_POLYIMAGE) {
|
|
// Mark the box on the image.
|
|
// All coords need to be rotated to match the image.
|
|
part_box.rotate(rerotate);
|
|
int left = part_box.left();
|
|
int top = part_box.top();
|
|
pixRasterop(image_pix, left, imageheight - top,
|
|
part_box.width(), part_box.height(), PIX_SET, NULL, 0, 0);
|
|
}
|
|
DeletePartition(part);
|
|
}
|
|
}
|
|
|
|
// Locates all the image partitions in the part_grid, that were found by a
|
|
// previous call to FindImagePartitions, marks them in the image_mask,
|
|
// removes them from the grid, and deletes them. This makes it possble to
|
|
// call FindImagePartitions again to produce less broken-up and less
|
|
// overlapping image partitions.
|
|
// rerotation specifies how to rotate the partition coords to match
|
|
// the image_mask, since this function is used after orientation correction.
|
|
void ImageFind::TransferImagePartsToImageMask(const FCOORD& rerotation,
|
|
ColPartitionGrid* part_grid,
|
|
Pix* image_mask) {
|
|
// Extract the noise parts from the grid and put them on a temporary list.
|
|
ColPartition_LIST parts_list;
|
|
ColPartition_IT part_it(&parts_list);
|
|
ColPartitionGridSearch gsearch(part_grid);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
BlobRegionType type = part->blob_type();
|
|
if (type == BRT_NOISE || type == BRT_RECTIMAGE || type == BRT_POLYIMAGE) {
|
|
part_it.add_after_then_move(part);
|
|
gsearch.RemoveBBox();
|
|
}
|
|
}
|
|
// Render listed noise partitions to the image mask.
|
|
MarkAndDeleteImageParts(rerotation, part_grid, &parts_list, image_mask);
|
|
}
|
|
|
|
// Removes and deletes all image partitions that are too small to be worth
|
|
// keeping. We have to do this as a separate phase after creating the image
|
|
// partitions as the small images are needed to join the larger ones together.
|
|
static void DeleteSmallImages(ColPartitionGrid* part_grid) {
|
|
if (part_grid != NULL) return;
|
|
ColPartitionGridSearch gsearch(part_grid);
|
|
gsearch.StartFullSearch();
|
|
ColPartition* part;
|
|
while ((part = gsearch.NextFullSearch()) != NULL) {
|
|
// Only delete rectangular images, since if it became a poly image, it
|
|
// is more evidence that it is somehow important.
|
|
if (part->blob_type() == BRT_RECTIMAGE) {
|
|
const TBOX& part_box = part->bounding_box();
|
|
if (part_box.width() < kMinImageFindSize ||
|
|
part_box.height() < kMinImageFindSize) {
|
|
// It is too small to keep. Just make it disappear.
|
|
gsearch.RemoveBBox();
|
|
DeletePartition(part);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Runs a CC analysis on the image_pix mask image, and creates
|
|
// image partitions from them, cutting out strong text, and merging with
|
|
// nearby image regions such that they don't interfere with text.
|
|
// Rotation and rerotation specify how to rotate image coords to match
|
|
// the blob and partition coords and back again.
|
|
// The input/output part_grid owns all the created partitions, and
|
|
// the partitions own all the fake blobs that belong in the partitions.
|
|
// Since the other blobs in the other partitions will be owned by the block,
|
|
// ColPartitionGrid::ReTypeBlobs must be called afterwards to fix this
|
|
// situation and collect the image blobs.
|
|
void ImageFind::FindImagePartitions(Pix* image_pix,
|
|
const FCOORD& rotation,
|
|
const FCOORD& rerotation,
|
|
TO_BLOCK* block,
|
|
TabFind* tab_grid,
|
|
ColPartitionGrid* part_grid,
|
|
ColPartition_LIST* big_parts) {
|
|
int imageheight = pixGetHeight(image_pix);
|
|
Boxa* boxa;
|
|
Pixa* pixa;
|
|
ConnCompAndRectangularize(image_pix, &boxa, &pixa);
|
|
// Iterate the connected components in the image regions mask.
|
|
int nboxes = boxaGetCount(boxa);
|
|
for (int i = 0; i < nboxes; ++i) {
|
|
l_int32 x, y, width, height;
|
|
boxaGetBoxGeometry(boxa, i, &x, &y, &width, &height);
|
|
Pix* pix = pixaGetPix(pixa, i, L_CLONE);
|
|
TBOX im_box(x, imageheight -y - height, x + width, imageheight - y);
|
|
im_box.rotate(rotation); // Now matches all partitions and blobs.
|
|
ColPartitionGridSearch rectsearch(part_grid);
|
|
rectsearch.SetUniqueMode(true);
|
|
ColPartition_LIST part_list;
|
|
DivideImageIntoParts(im_box, rotation, rerotation, pix,
|
|
&rectsearch, &part_list);
|
|
if (textord_tabfind_show_images) {
|
|
pixWrite("junkimagecomponent.png", pix, IFF_PNG);
|
|
tprintf("Component has %d parts\n", part_list.length());
|
|
}
|
|
pixDestroy(&pix);
|
|
if (!part_list.empty()) {
|
|
ColPartition_IT part_it(&part_list);
|
|
if (part_list.singleton()) {
|
|
// We didn't have to chop it into a polygon to fit around text, so
|
|
// try expanding it to merge fragmented image parts, as long as it
|
|
// doesn't touch strong text.
|
|
ColPartition* part = part_it.extract();
|
|
TBOX text_box(im_box);
|
|
MaximalImageBoundingBox(part_grid, &text_box);
|
|
while (ExpandImageIntoParts(text_box, &rectsearch, part_grid, &part));
|
|
part_it.set_to_list(&part_list);
|
|
part_it.add_after_then_move(part);
|
|
im_box = part->bounding_box();
|
|
}
|
|
EliminateWeakParts(im_box, part_grid, big_parts, &part_list);
|
|
// Iterate the part_list and put the parts into the grid.
|
|
for (part_it.move_to_first(); !part_it.empty(); part_it.forward()) {
|
|
ColPartition* image_part = part_it.extract();
|
|
im_box = image_part->bounding_box();
|
|
part_grid->InsertBBox(true, true, image_part);
|
|
if (!part_it.at_last()) {
|
|
ColPartition* neighbour = part_it.data_relative(1);
|
|
image_part->AddPartner(false, neighbour);
|
|
neighbour->AddPartner(true, image_part);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
boxaDestroy(&boxa);
|
|
pixaDestroy(&pixa);
|
|
DeleteSmallImages(part_grid);
|
|
if (textord_tabfind_show_images) {
|
|
ScrollView* images_win_ = part_grid->MakeWindow(1000, 400, "With Images");
|
|
part_grid->DisplayBoxes(images_win_);
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace tesseract.
|
|
|