tesseract/wordrec/pieces.cpp

344 lines
13 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: pieces.cpp (Formerly pieces.c)
* Description:
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Mon May 20 12:12:35 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include "blobs.h"
#include "helpers.h"
#include "matrix.h"
#include "ndminx.h"
#include "ratngs.h"
#include "seam.h"
#include "wordrec.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
using tesseract::ScoredFont;
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
/**********************************************************************
* classify_piece
*
* Create a larger piece from a collection of smaller ones. Classify
* it and return the results. Take the large piece apart to leave
* the collection of small pieces un modified.
**********************************************************************/
namespace tesseract {
BLOB_CHOICE_LIST *Wordrec::classify_piece(const GenericVector<SEAM*>& seams,
inT16 start,
inT16 end,
const char* description,
TWERD *word,
BlamerBundle *blamer_bundle) {
if (end > start) SEAM::JoinPieces(seams, word->blobs, start, end);
BLOB_CHOICE_LIST *choices = classify_blob(word->blobs[start], description,
White, blamer_bundle);
// Set the matrix_cell_ entries in all the BLOB_CHOICES.
BLOB_CHOICE_IT bc_it(choices);
for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
bc_it.data()->set_matrix_cell(start, end);
}
if (end > start) SEAM::BreakPieces(seams, word->blobs, start, end);
return (choices);
}
template<class BLOB_CHOICE>
int SortByUnicharID(const void *void1, const void *void2) {
const BLOB_CHOICE *p1 = *static_cast<const BLOB_CHOICE *const *>(void1);
const BLOB_CHOICE *p2 = *static_cast<const BLOB_CHOICE *const *>(void2);
return p1->unichar_id() - p2->unichar_id();
}
template<class BLOB_CHOICE>
int SortByRating(const void *void1, const void *void2) {
const BLOB_CHOICE *p1 = *static_cast<const BLOB_CHOICE *const *>(void1);
const BLOB_CHOICE *p2 = *static_cast<const BLOB_CHOICE *const *>(void2);
if (p1->rating() < p2->rating())
return 1;
return -1;
}
/**********************************************************************
* fill_filtered_fragment_list
*
* Filter the fragment list so that the filtered_choices only contain
* fragments that are in the correct position. choices is the list
* that we are going to filter. fragment_pos is the position in the
* fragment that we are looking for and num_frag_parts is the the
* total number of pieces. The result will be appended to
* filtered_choices.
**********************************************************************/
void Wordrec::fill_filtered_fragment_list(BLOB_CHOICE_LIST *choices,
int fragment_pos,
int num_frag_parts,
BLOB_CHOICE_LIST *filtered_choices) {
BLOB_CHOICE_IT filtered_choices_it(filtered_choices);
BLOB_CHOICE_IT choices_it(choices);
for (choices_it.mark_cycle_pt(); !choices_it.cycled_list();
choices_it.forward()) {
UNICHAR_ID choice_unichar_id = choices_it.data()->unichar_id();
const CHAR_FRAGMENT *frag = unicharset.get_fragment(choice_unichar_id);
if (frag != NULL && frag->get_pos() == fragment_pos &&
frag->get_total() == num_frag_parts) {
// Recover the unichar_id of the unichar that this fragment is
// a part of
BLOB_CHOICE *b = new BLOB_CHOICE(*choices_it.data());
int original_unichar = unicharset.unichar_to_id(frag->get_unichar());
b->set_unichar_id(original_unichar);
filtered_choices_it.add_to_end(b);
}
}
filtered_choices->sort(SortByUnicharID<BLOB_CHOICE>);
}
/**********************************************************************
* merge_and_put_fragment_lists
*
* Merge the fragment lists in choice_lists and append it to the
* ratings matrix.
**********************************************************************/
void Wordrec::merge_and_put_fragment_lists(inT16 row, inT16 column,
inT16 num_frag_parts,
BLOB_CHOICE_LIST *choice_lists,
MATRIX *ratings) {
BLOB_CHOICE_IT *choice_lists_it = new BLOB_CHOICE_IT[num_frag_parts];
for (int i = 0; i < num_frag_parts; i++) {
choice_lists_it[i].set_to_list(&choice_lists[i]);
choice_lists_it[i].mark_cycle_pt();
}
BLOB_CHOICE_LIST *merged_choice = ratings->get(row, column);
if (merged_choice == NULL)
merged_choice = new BLOB_CHOICE_LIST;
bool end_of_list = false;
BLOB_CHOICE_IT merged_choice_it(merged_choice);
while (!end_of_list) {
// Find the maximum unichar_id of the current entry the iterators
// are pointing at
UNICHAR_ID max_unichar_id = choice_lists_it[0].data()->unichar_id();
for (int i = 0; i < num_frag_parts; i++) {
UNICHAR_ID unichar_id = choice_lists_it[i].data()->unichar_id();
if (max_unichar_id < unichar_id) {
max_unichar_id = unichar_id;
}
}
// Move the each iterators until it gets to an entry that has a
// value greater than or equal to max_unichar_id
for (int i = 0; i < num_frag_parts; i++) {
UNICHAR_ID unichar_id = choice_lists_it[i].data()->unichar_id();
while (!choice_lists_it[i].cycled_list() &&
unichar_id < max_unichar_id) {
choice_lists_it[i].forward();
unichar_id = choice_lists_it[i].data()->unichar_id();
}
if (choice_lists_it[i].cycled_list()) {
end_of_list = true;
break;
}
}
if (end_of_list)
break;
// Checks if the fragments are parts of the same character
UNICHAR_ID first_unichar_id = choice_lists_it[0].data()->unichar_id();
bool same_unichar = true;
for (int i = 1; i < num_frag_parts; i++) {
UNICHAR_ID unichar_id = choice_lists_it[i].data()->unichar_id();
if (unichar_id != first_unichar_id) {
same_unichar = false;
break;
}
}
if (same_unichar) {
// Add the merged character to the result
UNICHAR_ID merged_unichar_id = first_unichar_id;
GenericVector<ScoredFont> merged_fonts =
choice_lists_it[0].data()->fonts();
float merged_min_xheight = choice_lists_it[0].data()->min_xheight();
float merged_max_xheight = choice_lists_it[0].data()->max_xheight();
float positive_yshift = 0, negative_yshift = 0;
int merged_script_id = choice_lists_it[0].data()->script_id();
BlobChoiceClassifier classifier = choice_lists_it[0].data()->classifier();
float merged_rating = 0, merged_certainty = 0;
for (int i = 0; i < num_frag_parts; i++) {
float rating = choice_lists_it[i].data()->rating();
float certainty = choice_lists_it[i].data()->certainty();
if (i == 0 || certainty < merged_certainty)
merged_certainty = certainty;
merged_rating += rating;
choice_lists_it[i].forward();
if (choice_lists_it[i].cycled_list())
end_of_list = true;
IntersectRange(choice_lists_it[i].data()->min_xheight(),
choice_lists_it[i].data()->max_xheight(),
&merged_min_xheight, &merged_max_xheight);
float yshift = choice_lists_it[i].data()->yshift();
if (yshift > positive_yshift) positive_yshift = yshift;
if (yshift < negative_yshift) negative_yshift = yshift;
// Use the min font rating over the parts.
// TODO(rays) font lists are unsorted. Need to be faster?
const GenericVector<ScoredFont>& frag_fonts =
choice_lists_it[i].data()->fonts();
for (int f = 0; f < frag_fonts.size(); ++f) {
int merged_f = 0;
for (merged_f = 0; merged_f < merged_fonts.size() &&
merged_fonts[merged_f].fontinfo_id != frag_fonts[f].fontinfo_id;
++merged_f) {}
if (merged_f == merged_fonts.size()) {
merged_fonts.push_back(frag_fonts[f]);
} else if (merged_fonts[merged_f].score > frag_fonts[f].score) {
merged_fonts[merged_f].score = frag_fonts[f].score;
}
}
}
float merged_yshift = positive_yshift != 0
? (negative_yshift != 0 ? 0 : positive_yshift)
: negative_yshift;
BLOB_CHOICE* choice = new BLOB_CHOICE(merged_unichar_id,
merged_rating,
merged_certainty,
merged_script_id,
merged_min_xheight,
merged_max_xheight,
merged_yshift,
classifier);
choice->set_fonts(merged_fonts);
merged_choice_it.add_to_end(choice);
}
}
if (classify_debug_level)
print_ratings_list("Merged Fragments", merged_choice,
unicharset);
if (merged_choice->empty())
delete merged_choice;
else
ratings->put(row, column, merged_choice);
delete [] choice_lists_it;
}
/**********************************************************************
* get_fragment_lists
*
* Recursively go through the ratings matrix to find lists of fragments
* to be merged in the function merge_and_put_fragment_lists.
* current_frag is the position of the piece we are looking for.
* current_row is the row in the rating matrix we are currently at.
* start is the row we started initially, so that we can know where
* to append the results to the matrix. num_frag_parts is the total
* number of pieces we are looking for and num_blobs is the size of the
* ratings matrix.
**********************************************************************/
void Wordrec::get_fragment_lists(inT16 current_frag, inT16 current_row,
inT16 start, inT16 num_frag_parts,
inT16 num_blobs, MATRIX *ratings,
BLOB_CHOICE_LIST *choice_lists) {
if (current_frag == num_frag_parts) {
merge_and_put_fragment_lists(start, current_row - 1, num_frag_parts,
choice_lists, ratings);
return;
}
for (inT16 x = current_row; x < num_blobs; x++) {
BLOB_CHOICE_LIST *choices = ratings->get(current_row, x);
if (choices == NULL)
continue;
fill_filtered_fragment_list(choices, current_frag, num_frag_parts,
&choice_lists[current_frag]);
if (!choice_lists[current_frag].empty()) {
get_fragment_lists(current_frag + 1, x + 1, start, num_frag_parts,
num_blobs, ratings, choice_lists);
choice_lists[current_frag].clear();
}
}
}
/**********************************************************************
* merge_fragments
*
* Try to merge fragments in the ratings matrix and put the result in
* the corresponding row and column
**********************************************************************/
void Wordrec::merge_fragments(MATRIX *ratings, inT16 num_blobs) {
BLOB_CHOICE_LIST choice_lists[CHAR_FRAGMENT::kMaxChunks];
for (inT16 start = 0; start < num_blobs; start++) {
for (int frag_parts = 2; frag_parts <= CHAR_FRAGMENT::kMaxChunks;
frag_parts++) {
get_fragment_lists(0, start, start, frag_parts, num_blobs,
ratings, choice_lists);
}
}
// Delete fragments from the rating matrix
for (inT16 x = 0; x < num_blobs; x++) {
for (inT16 y = x; y < num_blobs; y++) {
BLOB_CHOICE_LIST *choices = ratings->get(x, y);
if (choices != NULL) {
BLOB_CHOICE_IT choices_it(choices);
for (choices_it.mark_cycle_pt(); !choices_it.cycled_list();
choices_it.forward()) {
UNICHAR_ID choice_unichar_id = choices_it.data()->unichar_id();
const CHAR_FRAGMENT *frag =
unicharset.get_fragment(choice_unichar_id);
if (frag != NULL)
delete choices_it.extract();
}
}
}
}
}
} // namespace tesseract