mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-30 23:49:05 +08:00
5c8ad7ee72
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@384 d0cd1f9f-072b-0410-8dd7-cf729c803f20
459 lines
14 KiB
C++
459 lines
14 KiB
C++
/**********************************************************************
|
|
* File: lmedsq.cpp (Formerly lms.c)
|
|
* Description: Code for the LMS class.
|
|
* Author: Ray Smith
|
|
* Created: Fri Aug 7 09:30:53 BST 1992
|
|
*
|
|
* (C) Copyright 1992, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include "mfcpch.h"
|
|
#include <stdlib.h>
|
|
#include "statistc.h"
|
|
#include "memry.h"
|
|
#include "statistc.h"
|
|
#include "lmedsq.h"
|
|
|
|
#define EXTERN
|
|
|
|
EXTERN INT_VAR (lms_line_trials, 12, "Number of linew fits to do");
|
|
#define SEED1 0x1234 //default seeds
|
|
#define SEED2 0x5678
|
|
#define SEED3 0x9abc
|
|
#define LMS_MAX_FAILURES 3
|
|
|
|
#ifndef __UNIX__
|
|
uinT32 nrand48( //get random number
|
|
uinT16 *seeds //seeds to use
|
|
) {
|
|
static uinT32 seed = 0; //only seed
|
|
|
|
if (seed == 0) {
|
|
seed = seeds[0] ^ (seeds[1] << 8) ^ (seeds[2] << 16);
|
|
srand(seed);
|
|
}
|
|
//make 32 bit one
|
|
return rand () | (rand () << 16);
|
|
}
|
|
#endif
|
|
|
|
/**********************************************************************
|
|
* LMS::LMS
|
|
*
|
|
* Construct a LMS class, given the max no of samples to be given
|
|
**********************************************************************/
|
|
|
|
LMS::LMS ( //constructor
|
|
inT32 size //samplesize
|
|
):samplesize (size) {
|
|
samplecount = 0;
|
|
a = 0;
|
|
m = 0.0f;
|
|
c = 0.0f;
|
|
samples = (FCOORD *) alloc_mem (size * sizeof (FCOORD));
|
|
errors = (float *) alloc_mem (size * sizeof (float));
|
|
line_error = 0.0f;
|
|
fitted = FALSE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::~LMS
|
|
*
|
|
* Destruct a LMS class.
|
|
**********************************************************************/
|
|
|
|
LMS::~LMS ( //constructor
|
|
) {
|
|
free_mem(samples);
|
|
free_mem(errors);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::clear
|
|
*
|
|
* Clear samples from array.
|
|
**********************************************************************/
|
|
|
|
void LMS::clear() { //clear sample
|
|
samplecount = 0;
|
|
fitted = FALSE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::add
|
|
*
|
|
* Add another sample. More than the constructed number will be ignored.
|
|
**********************************************************************/
|
|
|
|
void LMS::add( //add sample
|
|
FCOORD sample //sample coords
|
|
) {
|
|
if (samplecount < samplesize)
|
|
//save it
|
|
samples[samplecount++] = sample;
|
|
fitted = FALSE;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::fit
|
|
*
|
|
* Fit a line to the given sample points.
|
|
**********************************************************************/
|
|
|
|
void LMS::fit( //fit sample
|
|
float &out_m, //output line
|
|
float &out_c) {
|
|
inT32 index; //of median
|
|
inT32 trials; //no of medians
|
|
float test_m, test_c; //candidate line
|
|
float test_error; //error of test line
|
|
|
|
switch (samplecount) {
|
|
case 0:
|
|
m = 0.0f; //no info
|
|
c = 0.0f;
|
|
line_error = 0.0f;
|
|
break;
|
|
|
|
case 1:
|
|
m = 0.0f;
|
|
c = samples[0].y (); //horiz thru pt
|
|
line_error = 0.0f;
|
|
break;
|
|
|
|
case 2:
|
|
if (samples[0].x () != samples[1].x ()) {
|
|
m = (samples[1].y () - samples[0].y ())
|
|
/ (samples[1].x () - samples[0].x ());
|
|
c = samples[0].y () - m * samples[0].x ();
|
|
}
|
|
else {
|
|
m = 0.0f;
|
|
c = (samples[0].y () + samples[1].y ()) / 2;
|
|
}
|
|
line_error = 0.0f;
|
|
break;
|
|
|
|
default:
|
|
pick_line(m, c); //use pts at random
|
|
compute_errors(m, c); //from given line
|
|
index = choose_nth_item (samplecount / 2, errors, samplecount);
|
|
line_error = errors[index];
|
|
for (trials = 1; trials < lms_line_trials; trials++) {
|
|
//random again
|
|
pick_line(test_m, test_c);
|
|
compute_errors(test_m, test_c);
|
|
index = choose_nth_item (samplecount / 2, errors, samplecount);
|
|
test_error = errors[index];
|
|
if (test_error < line_error) {
|
|
//find least median
|
|
line_error = test_error;
|
|
m = test_m;
|
|
c = test_c;
|
|
}
|
|
}
|
|
}
|
|
fitted = TRUE;
|
|
out_m = m;
|
|
out_c = c;
|
|
a = 0;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::fit_quadratic
|
|
*
|
|
* Fit a quadratic to the given sample points.
|
|
**********************************************************************/
|
|
|
|
void LMS::fit_quadratic( //fit sample
|
|
float outlier_threshold, //min outlier size
|
|
double &out_a, //x squared
|
|
float &out_b, //output line
|
|
float &out_c) {
|
|
inT32 trials; //no of medians
|
|
double test_a;
|
|
float test_b, test_c; //candidate line
|
|
float test_error; //error of test line
|
|
|
|
if (samplecount < 3) {
|
|
out_a = 0;
|
|
fit(out_b, out_c);
|
|
return;
|
|
}
|
|
pick_quadratic(a, m, c);
|
|
line_error = compute_quadratic_errors (outlier_threshold, a, m, c);
|
|
for (trials = 1; trials < lms_line_trials * 2; trials++) {
|
|
pick_quadratic(test_a, test_b, test_c);
|
|
test_error = compute_quadratic_errors (outlier_threshold,
|
|
test_a, test_b, test_c);
|
|
if (test_error < line_error) {
|
|
line_error = test_error; //find least median
|
|
a = test_a;
|
|
m = test_b;
|
|
c = test_c;
|
|
}
|
|
}
|
|
fitted = TRUE;
|
|
out_a = a;
|
|
out_b = m;
|
|
out_c = c;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::constrained_fit
|
|
*
|
|
* Fit a line to the given sample points.
|
|
* The line must have the given gradient.
|
|
**********************************************************************/
|
|
|
|
void LMS::constrained_fit( //fit sample
|
|
float fixed_m, //forced gradient
|
|
float &out_c) {
|
|
inT32 index; //of median
|
|
inT32 trials; //no of medians
|
|
float test_c; //candidate line
|
|
static uinT16 seeds[3] = { SEED1, SEED2, SEED3 };
|
|
//for nrand
|
|
float test_error; //error of test line
|
|
|
|
m = fixed_m;
|
|
switch (samplecount) {
|
|
case 0:
|
|
c = 0.0f;
|
|
line_error = 0.0f;
|
|
break;
|
|
|
|
case 1:
|
|
//horiz thru pt
|
|
c = samples[0].y () - m * samples[0].x ();
|
|
line_error = 0.0f;
|
|
break;
|
|
|
|
case 2:
|
|
c = (samples[0].y () + samples[1].y ()
|
|
- m * (samples[0].x () + samples[1].x ())) / 2;
|
|
line_error = m * samples[0].x () + c - samples[0].y ();
|
|
line_error *= line_error;
|
|
break;
|
|
|
|
default:
|
|
index = (inT32) nrand48 (seeds) % samplecount;
|
|
//compute line
|
|
c = samples[index].y () - m * samples[index].x ();
|
|
compute_errors(m, c); //from given line
|
|
index = choose_nth_item (samplecount / 2, errors, samplecount);
|
|
line_error = errors[index];
|
|
for (trials = 1; trials < lms_line_trials; trials++) {
|
|
index = (inT32) nrand48 (seeds) % samplecount;
|
|
test_c = samples[index].y () - m * samples[index].x ();
|
|
//compute line
|
|
compute_errors(m, test_c);
|
|
index = choose_nth_item (samplecount / 2, errors, samplecount);
|
|
test_error = errors[index];
|
|
if (test_error < line_error) {
|
|
//find least median
|
|
line_error = test_error;
|
|
c = test_c;
|
|
}
|
|
}
|
|
}
|
|
fitted = TRUE;
|
|
out_c = c;
|
|
a = 0;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::pick_line
|
|
*
|
|
* Fit a line to a random pair of sample points.
|
|
**********************************************************************/
|
|
|
|
void LMS::pick_line( //fit sample
|
|
float &line_m, //output gradient
|
|
float &line_c) {
|
|
inT16 trial_count; //no of attempts
|
|
static uinT16 seeds[3] = { SEED1, SEED2, SEED3 };
|
|
//for nrand
|
|
inT32 index1; //picked point
|
|
inT32 index2; //picked point
|
|
|
|
trial_count = 0;
|
|
do {
|
|
index1 = (inT32) nrand48 (seeds) % samplecount;
|
|
index2 = (inT32) nrand48 (seeds) % samplecount;
|
|
line_m = samples[index2].x () - samples[index1].x ();
|
|
trial_count++;
|
|
}
|
|
while (line_m == 0 && trial_count < LMS_MAX_FAILURES);
|
|
if (line_m == 0) {
|
|
line_c = (samples[index2].y () + samples[index1].y ()) / 2;
|
|
}
|
|
else {
|
|
line_m = (samples[index2].y () - samples[index1].y ()) / line_m;
|
|
line_c = samples[index1].y () - samples[index1].x () * line_m;
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::pick_quadratic
|
|
*
|
|
* Fit a quadratic to a random triplet of sample points.
|
|
**********************************************************************/
|
|
|
|
void LMS::pick_quadratic( //fit sample
|
|
double &line_a, //x suaread
|
|
float &line_m, //output gradient
|
|
float &line_c) {
|
|
inT16 trial_count; //no of attempts
|
|
static uinT16 seeds[3] = { SEED1, SEED2, SEED3 };
|
|
//for nrand
|
|
inT32 index1; //picked point
|
|
inT32 index2; //picked point
|
|
inT32 index3;
|
|
FCOORD x1x2; //vector
|
|
FCOORD x1x3;
|
|
FCOORD x3x2;
|
|
double bottom; //of a
|
|
|
|
trial_count = 0;
|
|
do {
|
|
if (trial_count >= LMS_MAX_FAILURES - 1) {
|
|
index1 = 0;
|
|
index2 = samplecount / 2;
|
|
index3 = samplecount - 1;
|
|
}
|
|
else {
|
|
index1 = (inT32) nrand48 (seeds) % samplecount;
|
|
index2 = (inT32) nrand48 (seeds) % samplecount;
|
|
index3 = (inT32) nrand48 (seeds) % samplecount;
|
|
}
|
|
x1x2 = samples[index2] - samples[index1];
|
|
x1x3 = samples[index3] - samples[index1];
|
|
x3x2 = samples[index2] - samples[index3];
|
|
bottom = x1x2.x () * x1x3.x () * x3x2.x ();
|
|
trial_count++;
|
|
}
|
|
while (bottom == 0 && trial_count < LMS_MAX_FAILURES);
|
|
if (bottom == 0) {
|
|
line_a = 0;
|
|
pick_line(line_m, line_c);
|
|
}
|
|
else {
|
|
line_a = x1x3 * x1x2 / bottom;
|
|
line_m = x1x2.y () - line_a * x1x2.x ()
|
|
* (samples[index2].x () + samples[index1].x ());
|
|
line_m /= x1x2.x ();
|
|
line_c = samples[index1].y () - samples[index1].x ()
|
|
* (samples[index1].x () * line_a + line_m);
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::compute_errors
|
|
*
|
|
* Compute the squared error from all the points.
|
|
**********************************************************************/
|
|
|
|
void LMS::compute_errors( //fit sample
|
|
float line_m, //input gradient
|
|
float line_c) {
|
|
inT32 index; //picked point
|
|
|
|
for (index = 0; index < samplecount; index++) {
|
|
errors[index] =
|
|
line_m * samples[index].x () + line_c - samples[index].y ();
|
|
errors[index] *= errors[index];
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::compute_quadratic_errors
|
|
*
|
|
* Compute the squared error from all the points.
|
|
**********************************************************************/
|
|
|
|
float LMS::compute_quadratic_errors( //fit sample
|
|
float outlier_threshold, //min outlier
|
|
double line_a,
|
|
float line_m, //input gradient
|
|
float line_c) {
|
|
inT32 outlier_count; //total outliers
|
|
inT32 index; //picked point
|
|
inT32 error_count; //no in total
|
|
double total_error; //summed squares
|
|
|
|
total_error = 0;
|
|
outlier_count = 0;
|
|
error_count = 0;
|
|
for (index = 0; index < samplecount; index++) {
|
|
errors[error_count] = line_c + samples[index].x ()
|
|
* (line_m + samples[index].x () * line_a) - samples[index].y ();
|
|
errors[error_count] *= errors[error_count];
|
|
if (errors[error_count] > outlier_threshold) {
|
|
outlier_count++;
|
|
errors[samplecount - outlier_count] = errors[error_count];
|
|
}
|
|
else {
|
|
total_error += errors[error_count++];
|
|
}
|
|
}
|
|
if (outlier_count * 3 < error_count)
|
|
return total_error / error_count;
|
|
else {
|
|
index = choose_nth_item (outlier_count / 2,
|
|
errors + samplecount - outlier_count,
|
|
outlier_count);
|
|
//median outlier
|
|
return errors[samplecount - outlier_count + index];
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LMS::plot
|
|
*
|
|
* Plot the fitted line of a LMS.
|
|
**********************************************************************/
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
void LMS::plot( //plot fit
|
|
ScrollView* win, //window
|
|
ScrollView::Color colour //colour to draw in
|
|
) {
|
|
if (fitted) {
|
|
win->Pen(colour);
|
|
win->SetCursor(samples[0].x (),
|
|
c + samples[0].x () * (m + samples[0].x () * a));
|
|
win->DrawTo(samples[samplecount - 1].x (),
|
|
c + samples[samplecount - 1].x () * (m +
|
|
samples[samplecount -
|
|
1].x () * a));
|
|
}
|
|
}
|
|
#endif
|