tesseract/training/cntraining.cpp
theraysmith 5b79487a8e Changes to training for 3.00
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@302 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2009-07-11 02:44:07 +00:00

335 lines
10 KiB
C++

/******************************************************************************
** Filename: cntraining.cpp
** Purpose: Generates a normproto and pffmtable.
** Author: Dan Johnson
** Revisment: Christy Russon
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
** 5/25/90, DSJ, Adapted to multiple feature types.
** Tuesday, May 17, 1998 Changes made to make feature specific and
** simplify structures. First step in simplifying training process.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
#include "oldlist.h"
#include "efio.h"
#include "emalloc.h"
#include "featdefs.h"
#include "tessopt.h"
#include "ocrfeatures.h"
#include "general.h"
#include "clusttool.h"
#include "cluster.h"
#include "name2char.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "unichar.h"
#include "commontraining.h"
#define PROGRAM_FEATURE_TYPE "cn"
#define MINSD (1.0f / 64.0f)
int row_number; /* cjn: fixes link problem */
/**----------------------------------------------------------------------------
Public Function Prototypes
----------------------------------------------------------------------------**/
int main (
int argc,
char **argv);
/**----------------------------------------------------------------------------
Private Function Prototypes
----------------------------------------------------------------------------**/
void ReadTrainingSamples (
FILE *File,
LIST* TrainingSamples);
void WriteNormProtos (
char *Directory,
LIST LabeledProtoList,
CLUSTERER *Clusterer);
/*
PARAMDESC *ConvertToPARAMDESC(
PARAM_DESC* Param_Desc,
int N);
*/
void WriteProtos(
FILE *File,
uinT16 N,
LIST ProtoList,
BOOL8 WriteSigProtos,
BOOL8 WriteInsigProtos);
/**----------------------------------------------------------------------------
Global Data Definitions and Declarations
----------------------------------------------------------------------------**/
/* global variable to hold configuration parameters to control clustering */
//-M 0.025 -B 0.05 -I 0.8 -C 1e-3
CLUSTERCONFIG Config =
{
elliptical, 0.025, 0.05, 0.8, 1e-3, 0
};
/**----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
int main (
int argc,
char **argv)
/*
** Parameters:
** argc number of command line arguments
** argv array of command line arguments
** Globals: none
** Operation:
** This program reads in a text file consisting of feature
** samples from a training page in the following format:
**
** FontName CharName NumberOfFeatureTypes(N)
** FeatureTypeName1 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FeatureTypeName2 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** ...
** FeatureTypeNameN NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FontName CharName ...
**
** It then appends these samples into a separate file for each
** character. The name of the file is
**
** DirectoryName/FontName/CharName.FeatureTypeName
**
** The DirectoryName can be specified via a command
** line argument. If not specified, it defaults to the
** current directory. The format of the resulting files is:
**
** NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** NumberOfFeatures(M)
** ...
**
** The output files each have a header which describes the
** type of feature which the file contains. This header is
** in the format required by the clusterer. A command line
** argument can also be used to specify that only the first
** N samples of each class should be used.
** Return: none
** Exceptions: none
** History: Fri Aug 18 08:56:17 1989, DSJ, Created.
*/
{
char *PageName;
FILE *TrainingPage;
LIST CharList = NIL;
CLUSTERER *Clusterer = NULL;
LIST ProtoList = NIL;
LIST NormProtoList = NIL;
LIST pCharList;
LABELEDLIST CharSample;
ParseArguments (argc, argv);
while ((PageName = GetNextFilename(argc, argv)) != NULL)
{
printf ("Reading %s ...\n", PageName);
TrainingPage = Efopen (PageName, "r");
ReadTrainingSamples (TrainingPage, &CharList);
fclose (TrainingPage);
//WriteTrainingSamples (Directory, CharList);
}
printf("Clustering ...\n");
pCharList = CharList;
iterate(pCharList)
{
//Cluster
CharSample = (LABELEDLIST) first_node (pCharList);
//printf ("\nClustering %s ...", CharSample->Label);
Clusterer = SetUpForClustering(CharSample, PROGRAM_FEATURE_TYPE);
float SavedMinSamples = Config.MinSamples;
Config.MagicSamples = CharSample->SampleCount;
while (Config.MinSamples > 0.001) {
ProtoList = ClusterSamples(Clusterer, &Config);
if (NumberOfProtos(ProtoList, 1, 0) > 0)
break;
else {
Config.MinSamples *= 0.95;
printf("0 significant protos for %s."
" Retrying clustering with MinSamples = %f%%\n",
CharSample->Label, Config.MinSamples);
}
}
Config.MinSamples = SavedMinSamples;
AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label);
}
FreeTrainingSamples (CharList);
if (Clusterer == NULL) // To avoid a SIGSEGV
return 1;
WriteNormProtos (Directory, NormProtoList, Clusterer);
FreeClusterer(Clusterer);
FreeProtoList(&ProtoList);
FreeNormProtoList(NormProtoList);
printf ("\n");
return 0;
} // main
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void ReadTrainingSamples (
FILE *File,
LIST* TrainingSamples)
/*
** Parameters:
** File open text file to read samples from
** Globals: none
** Operation:
** This routine reads training samples from a file and
** places them into a data structure which organizes the
** samples by FontName and CharName. It then returns this
** data structure.
** Return: none
** Exceptions: none
** History: Fri Aug 18 13:11:39 1989, DSJ, Created.
** Tue May 17 1998 simplifications to structure, illiminated
** font, and feature specification levels of structure.
*/
{
char unichar[UNICHAR_LEN + 1];
LABELEDLIST CharSample;
FEATURE_SET FeatureSamples;
CHAR_DESC CharDesc;
int Type, i;
while (fscanf (File, "%s %s", CTFontName, unichar) == 2) {
CharSample = FindList (*TrainingSamples, unichar);
if (CharSample == NULL) {
CharSample = NewLabeledList (unichar);
*TrainingSamples = push (*TrainingSamples, CharSample);
}
CharDesc = ReadCharDescription (File);
Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE);
FeatureSamples = CharDesc->FeatureSets[Type];
for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) {
FEATURE f = FeatureSamples->Features[feature];
for (int dim =0; dim < f->Type->NumParams; ++dim)
f->Params[dim] += UniformRandomNumber(-MINSD, MINSD);
}
CharSample->List = push (CharSample->List, FeatureSamples);
CharSample->SampleCount++;
for (i = 0; i < CharDesc->NumFeatureSets; i++)
if (Type != i)
FreeFeatureSet(CharDesc->FeatureSets[i]);
free (CharDesc);
}
} // ReadTrainingSamples
/*----------------------------------------------------------------------------*/
void WriteNormProtos (
char *Directory,
LIST LabeledProtoList,
CLUSTERER *Clusterer)
/*
** Parameters:
** Directory directory to place sample files into
** Operation:
** This routine writes the specified samples into files which
** are organized according to the font name and character name
** of the samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
*/
{
FILE *File;
char Filename[MAXNAMESIZE];
LABELEDLIST LabeledProto;
int N;
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "normproto");
printf ("\nWriting %s ...", Filename);
File = Efopen (Filename, "w");
fprintf(File,"%0d\n",Clusterer->SampleSize);
WriteParamDesc(File,Clusterer->SampleSize,Clusterer->ParamDesc);
iterate(LabeledProtoList)
{
LabeledProto = (LABELEDLIST) first_node (LabeledProtoList);
N = NumberOfProtos(LabeledProto->List,
ShowSignificantProtos, ShowInsignificantProtos);
if (N < 1) {
printf ("\nError! Not enough protos for %s: %d protos"
" (%d significant protos"
", %d insignificant protos)\n",
LabeledProto->Label, N,
NumberOfProtos(LabeledProto->List, 1, 0),
NumberOfProtos(LabeledProto->List, 0, 1));
exit(1);
}
fprintf(File, "\n%s %d\n", LabeledProto->Label, N);
WriteProtos(File, Clusterer->SampleSize, LabeledProto->List,
ShowSignificantProtos, ShowInsignificantProtos);
}
fclose (File);
} // WriteNormProtos
/*-------------------------------------------------------------------------*/
void WriteProtos(
FILE *File,
uinT16 N,
LIST ProtoList,
BOOL8 WriteSigProtos,
BOOL8 WriteInsigProtos)
{
PROTOTYPE *Proto;
// write prototypes
iterate(ProtoList)
{
Proto = (PROTOTYPE *) first_node ( ProtoList );
if (( Proto->Significant && WriteSigProtos ) ||
( ! Proto->Significant && WriteInsigProtos ) )
WritePrototype( File, N, Proto );
}
} // WriteProtos