mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-21 17:13:09 +08:00
0a53f8c5bf
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@34 d0cd1f9f-072b-0410-8dd7-cf729c803f20
409 lines
15 KiB
C++
409 lines
15 KiB
C++
/**********************************************************************
|
|
* File: baseapi.cpp
|
|
* Description: Simple API for calling tesseract.
|
|
* Author: Ray Smith
|
|
* Created: Fri Oct 06 15:35:01 PDT 2006
|
|
*
|
|
* (C) Copyright 2006, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "baseapi.h"
|
|
|
|
#include "tessedit.h"
|
|
#include "ocrclass.h"
|
|
#include "pageres.h"
|
|
#include "tessvars.h"
|
|
#include "control.h"
|
|
#include "applybox.h"
|
|
#include "pgedit.h"
|
|
#include "varabled.h"
|
|
#include "adaptmatch.h"
|
|
|
|
BOOL_VAR(tessedit_resegment_from_boxes, FALSE,
|
|
"Take segmentation and labeling from box file");
|
|
BOOL_VAR(tessedit_train_from_boxes, FALSE,
|
|
"Generate training data from boxed chars");
|
|
|
|
// Minimum sensible image size to be worth running tesseract.
|
|
const int kMinRectSize = 10;
|
|
|
|
// Start tesseract.
|
|
// The datapath must be the name of the data directory or some other file
|
|
// in which the data directory resides (for instance argv[0].)
|
|
// The configfile is the name of a file in the tessconfigs directory
|
|
// (eg batch) or NULL to run on defaults.
|
|
// Outputbase may also be NULL, and is the basename of various output files.
|
|
// If the output of any of these files is enabled, then a name nmust be given.
|
|
// If numeric_mode is true, only possible digits and roman numbers are
|
|
// returned. Returns 0 if successful. Crashes if not.
|
|
// The argc and argv may be 0 and NULL respectively. They are used for
|
|
// providing config files for debug/display purposes.
|
|
// TODO(rays) get the facts straight. Is it OK to call
|
|
// it more than once? Make it properly check for errors and return them.
|
|
int TessBaseAPI::Init(const char* datapath, const char* outputbase,
|
|
const char* configfile, bool numeric_mode,
|
|
int argc, char* argv[]) {
|
|
return InitWithLanguage(datapath, outputbase, NULL, configfile,
|
|
numeric_mode, argc, argv);
|
|
}
|
|
|
|
// Start tesseract.
|
|
// Similar to Init() except that it is possible to specify the language.
|
|
// Language is the code of the language for which the data will be loaded.
|
|
// (Codes follow ISO 639-2.) If it is NULL, english (eng) will be loaded.
|
|
int TessBaseAPI::InitWithLanguage(const char* datapath, const char* outputbase,
|
|
const char* language, const char* configfile,
|
|
bool numeric_mode, int argc, char* argv[]) {
|
|
int result = init_tesseract(datapath, outputbase, language,
|
|
configfile, argc, argv);
|
|
bln_numericmode.set_value(numeric_mode);
|
|
return result;
|
|
}
|
|
|
|
// Recognize a rectangle from an image and return the result as a string.
|
|
// May be called many times for a single Init.
|
|
// Currently has no error checking.
|
|
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
|
|
// Palette color images will not work properly and must be converted to
|
|
// 24 bit.
|
|
// Binary images of 1 bit per pixel may also be given but they must be
|
|
// byte packed with the MSB of the first byte being the first pixel, and a
|
|
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
|
|
// The recognized text is returned as a char* which (in future will be coded
|
|
// as UTF8 and) must be freed with the delete [] operator.
|
|
char* TessBaseAPI::TesseractRect(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top,
|
|
int width, int height) {
|
|
if (width < kMinRectSize || height < kMinRectSize)
|
|
return NULL; // Nothing worth doing.
|
|
|
|
// Copy/Threshold the image to the tesseract global page_image.
|
|
CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line,
|
|
left, top, width, height);
|
|
|
|
return RecognizeToString();
|
|
}
|
|
|
|
// Call between pages or documents etc to free up memory and forget
|
|
// adaptive data.
|
|
void TessBaseAPI::ClearAdaptiveClassifier() {
|
|
ResetAdaptiveClassifier();
|
|
}
|
|
|
|
// Close down tesseract and free up memory.
|
|
void TessBaseAPI::End() {
|
|
ResetAdaptiveClassifier();
|
|
end_tesseract();
|
|
}
|
|
|
|
// Dump the internal binary image to a PGM file.
|
|
void TessBaseAPI::DumpPGM(const char* filename) {
|
|
IMAGELINE line;
|
|
line.init(page_image.get_xsize());
|
|
FILE *fp = fopen(filename, "w");
|
|
fprintf(fp, "P5 " INT32FORMAT " " INT32FORMAT " 255\n", page_image.get_xsize(),
|
|
page_image.get_ysize());
|
|
for (int j = page_image.get_ysize()-1; j >= 0 ; --j) {
|
|
page_image.get_line(0, j, page_image.get_xsize(), &line, 0);
|
|
for (int i = 0; i < page_image.get_xsize(); ++i) {
|
|
UINT8 b = line.pixels[i] ? 255 : 0;
|
|
fwrite(&b, 1, 1, fp);
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
// Copy the given image rectangle to Tesseract, with adaptive thresholding
|
|
// if the image is not already binary.
|
|
void TessBaseAPI::CopyImageToTesseract(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top,
|
|
int width, int height) {
|
|
if (bytes_per_pixel > 0) {
|
|
// Threshold grey or color.
|
|
int* thresholds = new int[bytes_per_pixel];
|
|
int* hi_values = new int[bytes_per_pixel];
|
|
|
|
// Compute the thresholds.
|
|
OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line,
|
|
left, top, left + width, top + height,
|
|
thresholds, hi_values);
|
|
|
|
// Threshold the image to the tesseract global page_image.
|
|
ThresholdRect(imagedata, bytes_per_pixel, bytes_per_line,
|
|
left, top, width, height,
|
|
thresholds, hi_values);
|
|
delete [] thresholds;
|
|
delete [] hi_values;
|
|
} else {
|
|
CopyBinaryRect(imagedata, bytes_per_line, left, top, width, height);
|
|
}
|
|
}
|
|
|
|
// Compute the Otsu threshold(s) for the given image rectangle, making one
|
|
// for each channel. Each channel is always one byte per pixel.
|
|
// Returns an array of threshold values and an array of hi_values, such
|
|
// that a pixel value >threshold[channel] is considered foreground if
|
|
// hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
|
|
// that there is no apparent foreground. At least one hi_value will not be -1.
|
|
// thresholds and hi_values are assumed to be of bytes_per_pixel size.
|
|
void TessBaseAPI::OtsuThreshold(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top, int right, int bottom,
|
|
int* thresholds,
|
|
int* hi_values) {
|
|
// Of all channels with no good hi_value, keep the best so we can always
|
|
// produce at least one answer.
|
|
int best_hi_value = 0;
|
|
int best_hi_index = 0;
|
|
bool any_good_hivalue = false;
|
|
double best_hi_dist = 0.0;
|
|
|
|
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
|
|
thresholds[ch] = 0;
|
|
hi_values[ch] = -1;
|
|
// Compute the histogram of the image rectangle.
|
|
int histogram[256];
|
|
HistogramRect(imagedata + ch, bytes_per_pixel, bytes_per_line,
|
|
left, top, right, bottom, histogram);
|
|
int H;
|
|
int best_omega_0;
|
|
int best_t = OtsuStats(histogram, &H, &best_omega_0);
|
|
// To be a convincing foreground we must have a small fraction of H
|
|
// or to be a convincing background we must have a large fraction of H.
|
|
// In between we assume this channel contains no thresholding information.
|
|
int hi_value = best_omega_0 < H * 0.5;
|
|
thresholds[ch] = best_t;
|
|
if (best_omega_0 > H * 0.75) {
|
|
any_good_hivalue = true;
|
|
hi_values[ch] = 0;
|
|
}
|
|
else if (best_omega_0 < H * 0.25) {
|
|
any_good_hivalue = true;
|
|
hi_values[ch] = 1;
|
|
}
|
|
else {
|
|
// In case all channels are like this, keep the best of the bad lot.
|
|
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
|
|
if (hi_dist > best_hi_dist) {
|
|
best_hi_dist = hi_dist;
|
|
best_hi_value = hi_value;
|
|
best_hi_index = ch;
|
|
}
|
|
}
|
|
}
|
|
if (!any_good_hivalue) {
|
|
// Use the best of the ones that were not good enough.
|
|
hi_values[best_hi_index] = best_hi_value;
|
|
}
|
|
}
|
|
|
|
// Compute the histogram for the given image rectangle, and the given
|
|
// channel. (Channel pointed to by imagedata.) Each channel is always
|
|
// one byte per pixel.
|
|
// Bytes per pixel is used to skip channels not being
|
|
// counted with this call in a multi-channel (pixel-major) image.
|
|
// Histogram is always a 256 element array to count occurrences of
|
|
// each pixel value.
|
|
void TessBaseAPI::HistogramRect(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top, int right, int bottom,
|
|
int* histogram) {
|
|
int width = right - left;
|
|
memset(histogram, 0, sizeof(*histogram) * 256);
|
|
const unsigned char* pix = imagedata +
|
|
top*bytes_per_line +
|
|
left*bytes_per_pixel;
|
|
for (int y = top; y < bottom; ++y) {
|
|
for (int x = 0; x < width; ++x) {
|
|
++histogram[pix[x * bytes_per_pixel]];
|
|
}
|
|
pix += bytes_per_line;
|
|
}
|
|
}
|
|
|
|
// Compute the Otsu threshold(s) for the given histogram.
|
|
// Also returns H = total count in histogram, and
|
|
// omega0 = count of histogram below threshold.
|
|
int TessBaseAPI::OtsuStats(const int* histogram,
|
|
int* H_out,
|
|
int* omega0_out) {
|
|
int H = 0;
|
|
double mu_T = 0.0;
|
|
for (int i = 0; i < 256; ++i) {
|
|
H += histogram[i];
|
|
mu_T += i * histogram[i];
|
|
}
|
|
|
|
// Now maximize sig_sq_B over t.
|
|
// http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
|
|
int best_t = -1;
|
|
int omega_0, omega_1;
|
|
int best_omega_0 = 0;
|
|
double best_sig_sq_B = 0.0;
|
|
double mu_0, mu_1, mu_t;
|
|
omega_0 = 0;
|
|
mu_t = 0.0;
|
|
for (int t = 0; t < 255; ++t) {
|
|
omega_0 += histogram[t];
|
|
mu_t += t * static_cast<double>(histogram[t]);
|
|
if (omega_0 == 0)
|
|
continue;
|
|
omega_1 = H - omega_0;
|
|
mu_0 = mu_t / omega_0;
|
|
mu_1 = (mu_T - mu_t) / omega_1;
|
|
double sig_sq_B = mu_1 - mu_0;
|
|
sig_sq_B *= sig_sq_B * omega_0 * omega_1;
|
|
if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
|
|
best_sig_sq_B = sig_sq_B;
|
|
best_t = t;
|
|
best_omega_0 = omega_0;
|
|
}
|
|
}
|
|
if (H_out != NULL) *H_out = H;
|
|
if (omega0_out != NULL) *omega0_out = best_omega_0;
|
|
return best_t;
|
|
}
|
|
|
|
// Threshold the given grey or color image into the tesseract global
|
|
// image ready for recognition. Requires thresholds and hi_value
|
|
// produced by OtsuThreshold above.
|
|
void TessBaseAPI::ThresholdRect(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top,
|
|
int width, int height,
|
|
const int* thresholds,
|
|
const int* hi_values) {
|
|
IMAGELINE line;
|
|
page_image.create(width, height, 1);
|
|
line.init(width);
|
|
// For each line in the image, fill the IMAGELINE class and put it into the
|
|
// Tesseract global page_image. Note that Tesseract stores images with the
|
|
// bottom at y=0 and 0 is black, so we need 2 kinds of inversion.
|
|
const unsigned char* data = imagedata + top*bytes_per_line +
|
|
left*bytes_per_pixel;
|
|
for (int y = height - 1 ; y >= 0; --y) {
|
|
const unsigned char* pix = data;
|
|
for (int x = 0; x < width; ++x, pix += bytes_per_pixel) {
|
|
line.pixels[x] = 1;
|
|
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
|
|
if (hi_values[ch] >= 0 &&
|
|
(pix[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
|
|
line.pixels[x] = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
page_image.put_line(0, y, width, &line, 0);
|
|
data += bytes_per_line;
|
|
}
|
|
}
|
|
|
|
// Cut out the requested rectangle of the binary image to the
|
|
// tesseract global image ready for recognition.
|
|
void TessBaseAPI::CopyBinaryRect(const unsigned char* imagedata,
|
|
int bytes_per_line,
|
|
int left, int top,
|
|
int width, int height) {
|
|
// Copy binary image, cutting out the required rectangle.
|
|
IMAGE image;
|
|
image.capture(const_cast<unsigned char*>(imagedata),
|
|
bytes_per_line*8, top + height, 1);
|
|
page_image.create(width, height, 1);
|
|
copy_sub_image(&image, left, top, width, height, &page_image, 0, 0, false);
|
|
}
|
|
|
|
// Low-level function to recognize the current global image to a string.
|
|
char* TessBaseAPI::RecognizeToString() {
|
|
BLOCK_LIST block_list;
|
|
|
|
FindLines(&block_list);
|
|
|
|
// Now run the main recognition.
|
|
PAGE_RES* page_res = Recognize(&block_list, NULL);
|
|
|
|
return TesseractToText(page_res);
|
|
}
|
|
|
|
// Find lines from the image making the BLOCK_LIST.
|
|
void TessBaseAPI::FindLines(BLOCK_LIST* block_list) {
|
|
STRING input_file = "noname.tif";
|
|
// The following call creates a full-page block and then runs connected
|
|
// component analysis and text line creation.
|
|
pgeditor_read_file(input_file, block_list);
|
|
}
|
|
|
|
// Recognize the tesseract global image and return the result as Tesseract
|
|
// internal structures.
|
|
PAGE_RES* TessBaseAPI::Recognize(BLOCK_LIST* block_list, ETEXT_DESC* monitor) {
|
|
if (tessedit_resegment_from_boxes)
|
|
apply_boxes(block_list);
|
|
if (edit_variables)
|
|
start_variables_editor();
|
|
|
|
PAGE_RES* page_res = new PAGE_RES(block_list);
|
|
if (interactive_mode) {
|
|
pgeditor_main(block_list); //pgeditor user I/F
|
|
} else if (tessedit_train_from_boxes) {
|
|
apply_box_training(block_list);
|
|
} else {
|
|
// Now run the main recognition.
|
|
recog_all_words(page_res, monitor);
|
|
}
|
|
return page_res;
|
|
}
|
|
|
|
// Make a text string from the internal data structures.
|
|
// The input page_res is deleted.
|
|
char* TessBaseAPI::TesseractToText(PAGE_RES* page_res) {
|
|
if (page_res != NULL) {
|
|
int total_length = 2;
|
|
PAGE_RES_IT page_res_it(page_res);
|
|
// Iterate over the data structures to extract the recognition result.
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
if (choice != NULL) {
|
|
total_length += choice->string().length() + 1;
|
|
}
|
|
}
|
|
char* result = new char[total_length];
|
|
char* ptr = result;
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
if (choice != NULL) {
|
|
strcpy(ptr, choice->string().string());
|
|
ptr += strlen(ptr);
|
|
if (word->word->flag(W_EOL))
|
|
*ptr++ = '\n';
|
|
else
|
|
*ptr++ = ' ';
|
|
}
|
|
}
|
|
*ptr++ = '\n';
|
|
*ptr = '\0';
|
|
delete page_res;
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|