tesseract/arch/intsimdmatrixavx2.cpp

276 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: intsimdmatrixavx2.cpp
// Description: matrix-vector product for 8-bit data on avx2.
// Author: Ray Smith
// Created: Fri Aug 04 13:26:20 PST 2017
//
// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "intsimdmatrixavx2.h"
#ifdef __AVX2__
#include <immintrin.h>
#include <stdint.h>
#include <vector>
namespace tesseract {
// Number of outputs held in each register. 8 x 32 bit ints.
constexpr int kNumOutputsPerRegister = 8;
// Maximum number of registers that we will use.
constexpr int kMaxOutputRegisters = 8;
// Number of inputs in the inputs register.
constexpr int kNumInputsPerRegister = 32;
// Number of inputs in each weight group.
constexpr int kNumInputsPerGroup = 4;
// Number of groups of inputs to be broadcast.
constexpr int kNumInputGroups = kNumInputsPerRegister / kNumInputsPerGroup;
// Computes one set of 4x8 products of inputs and weights, adding to result.
// Horizontally adds 4 adjacent results, making 8x32-bit results.
// rep_input is assumed to be an 8x replicated set of 4x8-bit signed integers.
// Note that wi must previously have been re-organized with blocks of 4x8
// weights in contiguous memory.
// ones is a register of 16x16-bit values all equal to 1.
// Note: wi is incremented by the amount of data read.
// weights and reps are scratch registers.
// This function must be inlined with references in order for the compiler to
// correctly use the registers declared in the caller.
inline void MultiplyGroup(const __m256i& rep_input, const __m256i& ones,
const int8_t*& wi, __m256i& weights, __m256i& reps,
__m256i& result) {
// Load a 4x8 block of weights.
weights = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(wi));
wi += kNumInputsPerRegister;
// Normalize the signs on rep_input, weights, so weights is always +ve.
reps = _mm256_sign_epi8(rep_input, weights);
weights = _mm256_sign_epi8(weights, weights);
// Multiply 32x8-bit reps by 32x8-bit weights to make 16x16-bit results,
// with adjacent pairs added.
weights = _mm256_maddubs_epi16(weights, reps);
// Multiply 16x16-bit result by 16x16-bit ones to make 8x32-bit results,
// with adjacent pairs added. What we really want is a horizontal add of
// 16+16=32 bit result, but there is no such instruction, so multiply by
// 16-bit ones instead. It is probably faster than all the sign-extending,
// permuting and adding that would otherwise be required.
weights = _mm256_madd_epi16(weights, ones);
result = _mm256_add_epi32(result, weights);
}
// Extracts and converts 8x32-bit results from result, adding the bias from wi
// and scaling by scales, before storing in *v. Note that wi, scales and v are
// expected to contain 8 consecutive elements or num_out if less.
inline void ExtractResults(__m256i& result, __m256i& shift_id,
const int8_t*& wi, const double*& scales,
int num_out, double*& v) {
for (int out = 0; out < num_out; ++out) {
int32_t res = _mm256_extract_epi32(result, 0);
*v++ = (static_cast<double>(res) / MAX_INT8 + *wi++) * *scales++;
// Rotate the results in int32_t units, so the next result is ready.
result = _mm256_permutevar8x32_epi32(result, shift_id);
}
}
// Computes part of matrix.vector v = Wu. Computes N=64 results.
// The weights *must* be arranged so that consecutive reads from wi
// provides (num_in/kNumInputsPerGroup groups of (N output dim groups of
// (kNumInputsPerGroup inputs))). After that there must be N consecutive
// bias weights, before continuing with any more weights.
// u must be padded out with zeros to
// kNumInputsPerGroup*ceil(num_in/kNumInputsPerGroup) elements.
static void PartialMatrixDotVector64(const int8_t* wi, const double* scales,
const int8_t* u, int num_in, int num_out,
double* v) {
// Register containing 16-bit ones for horizontal add with 16->32 bit
// conversion.
__m256i ones =
_mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
__m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
// Initialize all the results to 0.
__m256i result0 = _mm256_setzero_si256();
__m256i result1 = _mm256_setzero_si256();
__m256i result2 = _mm256_setzero_si256();
__m256i result3 = _mm256_setzero_si256();
__m256i result4 = _mm256_setzero_si256();
__m256i result5 = _mm256_setzero_si256();
__m256i result6 = _mm256_setzero_si256();
__m256i result7 = _mm256_setzero_si256();
// Iterate over the input (u), one registerful at a time.
for (int j = 0; j < num_in;) {
__m256i inputs =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(u + j));
// Inputs are processed in groups of kNumInputsPerGroup, replicated
// kNumInputGroups times.
for (int ig = 0; ig < kNumInputGroups && j < num_in;
++ig, j += kNumInputsPerGroup) {
// Replicate the low 32 bits (4 inputs) 8 times.
__m256i rep_input =
_mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs));
// Rotate the inputs in groups of 4, so the next 4 inputs are ready.
inputs = _mm256_permutevar8x32_epi32(inputs, shift_id);
__m256i weights, reps;
// Mul-add, with horizontal add of the 4 inputs to each of the results.
MultiplyGroup(rep_input, ones, wi, weights, reps, result0);
MultiplyGroup(rep_input, ones, wi, weights, reps, result1);
MultiplyGroup(rep_input, ones, wi, weights, reps, result2);
MultiplyGroup(rep_input, ones, wi, weights, reps, result3);
MultiplyGroup(rep_input, ones, wi, weights, reps, result4);
MultiplyGroup(rep_input, ones, wi, weights, reps, result5);
MultiplyGroup(rep_input, ones, wi, weights, reps, result6);
MultiplyGroup(rep_input, ones, wi, weights, reps, result7);
}
}
ExtractResults(result0, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result1, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result2, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result3, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result4, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result5, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result6, shift_id, wi, scales, kNumOutputsPerRegister, v);
num_out -= kNumOutputsPerRegister * 7;
ExtractResults(result7, shift_id, wi, scales,
std::min(kNumOutputsPerRegister, num_out), v);
}
// Computes part of matrix.vector v = Wu. Computes N=32 results.
// For details see PartialMatrixDotVector64 with N=32.
static void PartialMatrixDotVector32(const int8_t* wi, const double* scales,
const int8_t* u, int num_in, int num_out,
double* v) {
// Register containing 16-bit ones for horizontal add with 16->32 bit
// conversion.
__m256i ones =
_mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
__m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
// Initialize all the results to 0.
__m256i result0 = _mm256_setzero_si256();
__m256i result1 = _mm256_setzero_si256();
__m256i result2 = _mm256_setzero_si256();
__m256i result3 = _mm256_setzero_si256();
// Iterate over the input (u), one registerful at a time.
for (int j = 0; j < num_in;) {
__m256i inputs =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(u + j));
// Inputs are processed in groups of kNumInputsPerGroup, replicated
// kNumInputGroups times.
for (int ig = 0; ig < kNumInputGroups && j < num_in;
++ig, j += kNumInputsPerGroup) {
// Replicate the low 32 bits (4 inputs) 8 times.
__m256i rep_input =
_mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs));
// Rotate the inputs in groups of 4, so the next 4 inputs are ready.
inputs = _mm256_permutevar8x32_epi32(inputs, shift_id);
__m256i weights, reps;
// Mul-add, with horizontal add of the 4 inputs to each of the results.
MultiplyGroup(rep_input, ones, wi, weights, reps, result0);
MultiplyGroup(rep_input, ones, wi, weights, reps, result1);
MultiplyGroup(rep_input, ones, wi, weights, reps, result2);
MultiplyGroup(rep_input, ones, wi, weights, reps, result3);
}
}
ExtractResults(result0, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result1, shift_id, wi, scales, kNumOutputsPerRegister, v);
ExtractResults(result2, shift_id, wi, scales, kNumOutputsPerRegister, v);
num_out -= kNumOutputsPerRegister * 3;
ExtractResults(result3, shift_id, wi, scales,
std::min(kNumOutputsPerRegister, num_out), v);
}
// Computes part of matrix.vector v = Wu. Computes N=16 results.
// For details see PartialMatrixDotVector64 with N=16.
static void PartialMatrixDotVector16(const int8_t* wi, const double* scales,
const int8_t* u, int num_in, int num_out,
double* v) {
// Register containing 16-bit ones for horizontal add with 16->32 bit
// conversion.
__m256i ones =
_mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
__m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
// Initialize all the results to 0.
__m256i result0 = _mm256_setzero_si256();
__m256i result1 = _mm256_setzero_si256();
// Iterate over the input (u), one registerful at a time.
for (int j = 0; j < num_in;) {
__m256i inputs =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(u + j));
// Inputs are processed in groups of kNumInputsPerGroup, replicated
// kNumInputGroups times.
for (int ig = 0; ig < kNumInputGroups && j < num_in;
++ig, j += kNumInputsPerGroup) {
// Replicate the low 32 bits (4 inputs) 8 times.
__m256i rep_input =
_mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs));
// Rotate the inputs in groups of 4, so the next 4 inputs are ready.
inputs = _mm256_permutevar8x32_epi32(inputs, shift_id);
__m256i weights, reps;
// Mul-add, with horizontal add of the 4 inputs to each of the results.
MultiplyGroup(rep_input, ones, wi, weights, reps, result0);
MultiplyGroup(rep_input, ones, wi, weights, reps, result1);
}
}
ExtractResults(result0, shift_id, wi, scales, kNumOutputsPerRegister, v);
num_out -= kNumOutputsPerRegister;
ExtractResults(result1, shift_id, wi, scales,
std::min(kNumOutputsPerRegister, num_out), v);
}
// Computes part of matrix.vector v = Wu. Computes N=8 results.
// For details see PartialMatrixDotVector64 with N=8.
static void PartialMatrixDotVector8(const int8_t* wi, const double* scales,
const int8_t* u, int num_in, int num_out,
double* v) {
// Register containing 16-bit ones for horizontal add with 16->32 bit
// conversion.
__m256i ones =
_mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
__m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
// Initialize all the results to 0.
__m256i result0 = _mm256_setzero_si256();
// Iterate over the input (u), one registerful at a time.
for (int j = 0; j < num_in;) {
__m256i inputs =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(u + j));
// Inputs are processed in groups of kNumInputsPerGroup, replicated
// kNumInputGroups times.
for (int ig = 0; ig < kNumInputGroups && j < num_in;
++ig, j += kNumInputsPerGroup) {
// Replicate the low 32 bits (4 inputs) 8 times.
__m256i rep_input =
_mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs));
// Rotate the inputs in groups of 4, so the next 4 inputs are ready.
inputs = _mm256_permutevar8x32_epi32(inputs, shift_id);
__m256i weights, reps;
// Mul-add, with horizontal add of the 4 inputs to each of the results.
MultiplyGroup(rep_input, ones, wi, weights, reps, result0);
}
}
ExtractResults(result0, shift_id, wi, scales, num_out, v);
}
#else
namespace tesseract {
#endif // __AVX2__
IntSimdMatrixAVX2::IntSimdMatrixAVX2() {
#ifdef __AVX2__
num_outputs_per_register_ = kNumOutputsPerRegister;
max_output_registers_ = kMaxOutputRegisters;
num_inputs_per_register_ = kNumInputsPerRegister;
num_inputs_per_group_ = kNumInputsPerGroup;
num_input_groups_ = kNumInputGroups;
partial_funcs_ = {PartialMatrixDotVector64, PartialMatrixDotVector32,
PartialMatrixDotVector16, PartialMatrixDotVector8};
#endif // __AVX2__
}
} // namespace tesseract.