mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-11 05:27:49 +08:00
d11dc049e3
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@1015 d0cd1f9f-072b-0410-8dd7-cf729c803f20
196 lines
7.4 KiB
C++
196 lines
7.4 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
#ifndef TESSERACT_CLASSIFY_SAMPLEITERATOR_H_
|
|
#define TESSERACT_CLASSIFY_SAMPLEITERATOR_H_
|
|
|
|
namespace tesseract {
|
|
|
|
class IndexMapBiDi;
|
|
class IntFeatureMap;
|
|
class ShapeTable;
|
|
class TrainingSample;
|
|
class TrainingSampleSet;
|
|
struct UnicharAndFonts;
|
|
|
|
// Iterator class to encapsulate the complex iteration involved in getting
|
|
// all samples of all shapes needed for a classification problem.
|
|
//
|
|
// =====INPUTS TO Init FUNCTION=====
|
|
// The charset_map defines a subset of the sample_set classes (with a NULL
|
|
// shape_table, or the shape_table classes if not NULL.)
|
|
//
|
|
// The shape_table (if not NULL) defines the mapping from shapes to
|
|
// font_id/class_id pairs. Each shape is a list of unichar_id and font lists.
|
|
//
|
|
// The sample_set holds the samples and provides indexed access to samples
|
|
// of font_id/class_id pairs.
|
|
//
|
|
// If randomize is true, the samples are perturbed slightly, but the
|
|
// perturbation is guaranteed to be the same for multiple identical
|
|
// iterations.
|
|
//
|
|
// =====DIFFERENT COMBINATIONS OF INPUTS=====
|
|
// NULL shape_table:
|
|
// Without a shape_table, everything works in UNICHAR_IDs.
|
|
//
|
|
// NULL shape_table, NULL charset_map:
|
|
// Iterations simply run over the samples in the order the samples occur in the
|
|
// input files.
|
|
// GetCompactClassID and GetSparseClassID both return the sample UNICHAR_ID.
|
|
//
|
|
// NULL shape_table, non-NULL charset_map:
|
|
// When shape_table is NULL, the charset_map indexes unichar_ids directly,
|
|
// and an iteration returns all samples of all chars in the charset_map, which
|
|
// is a subset of the full unicharset.
|
|
// The iteration will be in groups of the same unichar_id, in the order
|
|
// defined by the charset_map.
|
|
// GetCompactClassID returns the charset_map index of a sample, and
|
|
// GetSparseClassID returns the sample UNICHAR_ID.
|
|
//
|
|
// Non-NULL shape_table:
|
|
// With a shape_table, samples are grouped according to the shape_table, so
|
|
// multiple UNICHAR_IDs and fonts may be grouped together, and everything
|
|
// works in shape_ids.
|
|
//
|
|
// Non-NULL shape_table, NULL charset_map.
|
|
// Iterations simply run over the samples in the order of shape_id.
|
|
// GetCompactClassID and GetSparseClassID both return the shape_id.
|
|
// (If you want the unichar_id or font_id, the sample still has them.)
|
|
//
|
|
// Non-NULL shape_table, non-NULL charset_map.
|
|
// When shape_table is not NULL, the charset_map indexes and subsets shapes in
|
|
// the shape_table, and iterations will be in shape_table order, not
|
|
// charset_map order.
|
|
// GetCompactClassID returns the charset_map index of a shape, and
|
|
// GetSparseClassID returns the shape_id.
|
|
//
|
|
// =====What is SampleIterator good for?=====
|
|
// Inside a classifier training module, the SampleIterator has abstracted away
|
|
// all the different modes above.
|
|
// Use the following iteration to train your classifier:
|
|
// for (it.Begin(); !it.AtEnd(); it.Next()) {
|
|
// const TrainingSample& sample = it.GetSample();
|
|
// int class_id = it.GetCompactClassID();
|
|
// Your classifier may or may not be dealing with a shape_table, and may be
|
|
// dealing with some subset of the character/shape set. It doesn't need to
|
|
// know and shouldn't care. It is just learning shapes with compact class ids
|
|
// in the range [0, it.CompactCharsetSize()).
|
|
class SampleIterator {
|
|
public:
|
|
SampleIterator();
|
|
~SampleIterator();
|
|
|
|
void Clear();
|
|
|
|
// See class comment for arguments.
|
|
void Init(const IndexMapBiDi* charset_map,
|
|
const ShapeTable* shape_table,
|
|
bool randomize,
|
|
TrainingSampleSet* sample_set);
|
|
|
|
// Iterator functions designed for use with a simple for loop:
|
|
// for (it.Begin(); !it.AtEnd(); it.Next()) {
|
|
// const TrainingSample& sample = it.GetSample();
|
|
// int class_id = it.GetCompactClassID();
|
|
// ...
|
|
// }
|
|
void Begin();
|
|
bool AtEnd() const;
|
|
const TrainingSample& GetSample() const;
|
|
TrainingSample* MutableSample() const;
|
|
// Returns the total index (from the original set of samples) of the current
|
|
// sample.
|
|
int GlobalSampleIndex() const;
|
|
// Returns the index of the current sample in compact charset space, so
|
|
// in a 2-class problem between x and y, the returned indices will all be
|
|
// 0 or 1, and have nothing to do with the unichar_ids.
|
|
// If the charset_map_ is NULL, then this is equal to GetSparseClassID().
|
|
int GetCompactClassID() const;
|
|
// Returns the index of the current sample in sparse charset space, so
|
|
// in a 2-class problem between x and y, the returned indices will all be
|
|
// x or y, where x and y may be unichar_ids (no shape_table_) or shape_ids
|
|
// with a shape_table_.
|
|
int GetSparseClassID() const;
|
|
// Moves on to the next indexable sample. If the end is reached, leaves
|
|
// the state such that AtEnd() is true.
|
|
void Next();
|
|
|
|
// Returns the size of the compact charset space.
|
|
int CompactCharsetSize() const;
|
|
// Returns the size of the sparse charset space.
|
|
int SparseCharsetSize() const;
|
|
|
|
const IndexMapBiDi& charset_map() const {
|
|
return *charset_map_;
|
|
}
|
|
const ShapeTable* shape_table() const {
|
|
return shape_table_;
|
|
}
|
|
// Sample set operations.
|
|
const TrainingSampleSet* sample_set() const {
|
|
return sample_set_;
|
|
}
|
|
|
|
// A set of functions that do something to all the samples accessed by the
|
|
// iterator, as it is currently setup.
|
|
|
|
// Apply the supplied feature_space/feature_map transform to all samples
|
|
// accessed by this iterator.
|
|
void MapSampleFeatures(const IntFeatureMap& feature_map);
|
|
|
|
// Adjust the weights of all the samples to be uniform in the given charset.
|
|
// Returns the number of samples in the iterator.
|
|
int UniformSamples();
|
|
|
|
// Normalize the weights of all the samples defined by the iterator so they
|
|
// sum to 1. Returns the minimum assigned sample weight.
|
|
double NormalizeSamples();
|
|
|
|
private:
|
|
// Helper returns the current UnicharAndFont shape_entry.
|
|
const UnicharAndFonts* GetShapeEntry() const;
|
|
|
|
// Map to subset the actual charset space.
|
|
const IndexMapBiDi* charset_map_;
|
|
// Shape table to recombine character classes into shapes
|
|
const ShapeTable* shape_table_;
|
|
// The samples to iterate over.
|
|
TrainingSampleSet* sample_set_;
|
|
// Flag to control randomizing the sample features.
|
|
bool randomize_;
|
|
// Shape table owned by this used to iterate character classes.
|
|
ShapeTable* owned_shape_table_;
|
|
|
|
// Top-level iteration. Shape index in sparse charset_map space.
|
|
int shape_index_;
|
|
int num_shapes_;
|
|
// Index to the character class within a shape.
|
|
int shape_char_index_;
|
|
int num_shape_chars_;
|
|
// Index to the font within a shape/class pair.
|
|
int shape_font_index_;
|
|
int num_shape_fonts_;
|
|
// The lowest level iteration. sample_index_/num_samples_ counts samples
|
|
// in the current shape/class/font combination.
|
|
int sample_index_;
|
|
int num_samples_;
|
|
};
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif // TESSERACT_CLASSIFY_SAMPLEITERATOR_H_
|