tesseract/src/wordrec/params_model.cpp

172 lines
5.3 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: params_model.cpp
// Description: Trained language model parameters.
// Author: David Eger
// Created: Mon Jun 11 11:26:42 PDT 2012
//
// (C) Copyright 2012, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "params_model.h"
#include <ctype.h>
#include <cmath>
#include <cstdio>
#include "bitvector.h"
#include "tprintf.h"
namespace tesseract {
// Scale factor to apply to params model scores.
static const float kScoreScaleFactor = 100.0f;
// Minimum cost result to return.
static const float kMinFinalCost = 0.001f;
// Maximum cost result to return.
static const float kMaxFinalCost = 100.0f;
void ParamsModel::Print() {
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
tprintf("ParamsModel for pass %d lang %s\n", p, lang_.string());
for (int i = 0; i < weights_vec_[p].size(); ++i) {
tprintf("%s = %g\n", kParamsTrainingFeatureTypeName[i],
weights_vec_[p][i]);
}
}
}
void ParamsModel::Copy(const ParamsModel &other_model) {
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
weights_vec_[p] = other_model.weights_for_pass(
static_cast<PassEnum>(p));
}
}
// Given a (modifiable) line, parse out a key / value pair.
// Return true on success.
bool ParamsModel::ParseLine(char *line, char** key, float *val) {
if (line[0] == '#')
return false;
int end_of_key = 0;
while (line[end_of_key] && !isspace(line[end_of_key])) end_of_key++;
if (!line[end_of_key]) {
tprintf("ParamsModel::Incomplete line %s\n", line);
return false;
}
line[end_of_key++] = 0;
*key = line;
if (sscanf(line + end_of_key, " %f", val) != 1)
return false;
return true;
}
// Applies params model weights to the given features.
// Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES.
// The cost is set to a number that can be multiplied by the outline length,
// as with the old ratings scheme. This enables words of different length
// and combinations of words to be compared meaningfully.
float ParamsModel::ComputeCost(const float features[]) const {
float unnorm_score = 0.0;
for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) {
unnorm_score += weights_vec_[pass_][f] * features[f];
}
return ClipToRange(-unnorm_score / kScoreScaleFactor,
kMinFinalCost, kMaxFinalCost);
}
bool ParamsModel::Equivalent(const ParamsModel &that) const {
float epsilon = 0.0001;
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
if (weights_vec_[p].size() != that.weights_vec_[p].size()) return false;
for (int i = 0; i < weights_vec_[p].size(); i++) {
if (weights_vec_[p][i] != that.weights_vec_[p][i] &&
fabs(weights_vec_[p][i] - that.weights_vec_[p][i]) > epsilon)
return false;
}
}
return true;
}
bool ParamsModel::LoadFromFile(
const char *lang,
const char *full_path) {
TFile fp;
if (!fp.Open(full_path, nullptr)) {
tprintf("Error opening file %s\n", full_path);
return false;
}
return LoadFromFp(lang, &fp);
}
bool ParamsModel::LoadFromFp(const char *lang, TFile *fp) {
const int kMaxLineSize = 100;
char line[kMaxLineSize];
BitVector present;
present.Init(PTRAIN_NUM_FEATURE_TYPES);
lang_ = lang;
// Load weights for passes with adaption on.
GenericVector<float> &weights = weights_vec_[pass_];
weights.init_to_size(PTRAIN_NUM_FEATURE_TYPES, 0.0);
while (fp->FGets(line, kMaxLineSize) != nullptr) {
char *key = nullptr;
float value;
if (!ParseLine(line, &key, &value))
continue;
int idx = ParamsTrainingFeatureByName(key);
if (idx < 0) {
tprintf("ParamsModel::Unknown parameter %s\n", key);
continue;
}
if (!present[idx]) {
present.SetValue(idx, true);
}
weights[idx] = value;
}
bool complete = (present.NumSetBits() == PTRAIN_NUM_FEATURE_TYPES);
if (!complete) {
for (int i = 0; i < PTRAIN_NUM_FEATURE_TYPES; i++) {
if (!present[i]) {
tprintf("Missing field %s.\n", kParamsTrainingFeatureTypeName[i]);
}
}
lang_ = "";
weights.truncate(0);
}
return complete;
}
bool ParamsModel::SaveToFile(const char *full_path) const {
const GenericVector<float> &weights = weights_vec_[pass_];
if (weights.size() != PTRAIN_NUM_FEATURE_TYPES) {
tprintf("Refusing to save ParamsModel that has not been initialized.\n");
return false;
}
FILE *fp = fopen(full_path, "wb");
if (!fp) {
tprintf("Could not open %s for writing.\n", full_path);
return false;
}
bool all_good = true;
for (int i = 0; i < weights.size(); i++) {
if (fprintf(fp, "%s %f\n", kParamsTrainingFeatureTypeName[i], weights[i])
< 0) {
all_good = false;
}
}
fclose(fp);
return all_good;
}
} // namespace tesseract