mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-05 02:47:00 +08:00
e6d683923c
Signed-off-by: Stefan Weil <sw@weilnetz.de>
419 lines
20 KiB
C++
419 lines
20 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: language_model.h
|
|
// Description: Functions that utilize the knowledge about the properties,
|
|
// structure and statistics of the language to help segmentation
|
|
// search.
|
|
// Author: Daria Antonova
|
|
// Created: Mon Nov 11 11:26:43 PST 2009
|
|
//
|
|
// (C) Copyright 2009, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_
|
|
#define TESSERACT_WORDREC_LANGUAGE_MODEL_H_
|
|
|
|
#include "associate.h"
|
|
#include "dawg.h"
|
|
#include "dict.h"
|
|
#include "fontinfo.h"
|
|
#include "intproto.h"
|
|
#include "lm_consistency.h"
|
|
#include "lm_pain_points.h"
|
|
#include "lm_state.h"
|
|
#include "matrix.h"
|
|
#include "params.h"
|
|
#include "pageres.h"
|
|
#include "params_model.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// This class that contains the data structures and functions necessary
|
|
// to represent and use the knowledge about the language.
|
|
class LanguageModel {
|
|
public:
|
|
// Masks for keeping track of top choices that should not be pruned out.
|
|
static const LanguageModelFlagsType kSmallestRatingFlag = 0x1;
|
|
static const LanguageModelFlagsType kLowerCaseFlag = 0x2;
|
|
static const LanguageModelFlagsType kUpperCaseFlag = 0x4;
|
|
static const LanguageModelFlagsType kDigitFlag = 0x8;
|
|
static const LanguageModelFlagsType kXhtConsistentFlag = 0x10;
|
|
|
|
// Denominator for normalizing per-letter ngram cost when deriving
|
|
// penalty adjustments.
|
|
static const float kMaxAvgNgramCost;
|
|
|
|
LanguageModel(const UnicityTable<FontInfo> *fontinfo_table, Dict *dict);
|
|
~LanguageModel();
|
|
|
|
// Fills the given floats array with features extracted from path represented
|
|
// by the given ViterbiStateEntry. See ccstruct/params_training_featdef.h
|
|
// for feature information.
|
|
// Note: the function assumes that features points to an array of size
|
|
// PTRAIN_NUM_FEATURE_TYPES.
|
|
static void ExtractFeaturesFromPath(const ViterbiStateEntry &vse,
|
|
float features[]);
|
|
|
|
// Updates data structures that are used for the duration of the segmentation
|
|
// search on the current word;
|
|
void InitForWord(const WERD_CHOICE *prev_word,
|
|
bool fixed_pitch, float max_char_wh_ratio,
|
|
float rating_cert_scale);
|
|
|
|
// Updates language model state of the given BLOB_CHOICE_LIST (from
|
|
// the ratings matrix) a its parent. Updates pain_points if new
|
|
// problematic points are found in the segmentation graph.
|
|
//
|
|
// At most language_model_viterbi_list_size are kept in each
|
|
// LanguageModelState.viterbi_state_entries list.
|
|
// At most language_model_viterbi_list_max_num_prunable of those are prunable
|
|
// (non-dictionary) paths.
|
|
// The entries that represent dictionary word paths are kept at the front
|
|
// of the list.
|
|
// The list ordered by cost that is computed collectively by several
|
|
// language model components (currently dawg and ngram components).
|
|
bool UpdateState(
|
|
bool just_classified,
|
|
int curr_col, int curr_row,
|
|
BLOB_CHOICE_LIST *curr_list,
|
|
LanguageModelState *parent_node,
|
|
LMPainPoints *pain_points,
|
|
WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle,
|
|
BlamerBundle *blamer_bundle);
|
|
|
|
// Returns true if an acceptable best choice was discovered.
|
|
inline bool AcceptableChoiceFound() { return acceptable_choice_found_; }
|
|
inline void SetAcceptableChoiceFound(bool val) {
|
|
acceptable_choice_found_ = val;
|
|
}
|
|
// Returns the reference to ParamsModel.
|
|
inline ParamsModel &getParamsModel() { return params_model_; }
|
|
|
|
protected:
|
|
|
|
inline float CertaintyScore(float cert) {
|
|
if (language_model_use_sigmoidal_certainty) {
|
|
// cert is assumed to be between 0 and -dict_->certainty_scale.
|
|
// If you enable language_model_use_sigmoidal_certainty, you
|
|
// need to adjust language_model_ngram_nonmatch_score as well.
|
|
cert = -cert / dict_->certainty_scale;
|
|
return 1.0f / (1.0f + exp(10.0f * cert));
|
|
} else {
|
|
return (-1.0f / cert);
|
|
}
|
|
}
|
|
|
|
inline float ComputeAdjustment(int num_problems, float penalty) {
|
|
if (num_problems == 0) return 0.0f;
|
|
if (num_problems == 1) return penalty;
|
|
return (penalty + (language_model_penalty_increment *
|
|
static_cast<float>(num_problems-1)));
|
|
}
|
|
|
|
// Computes the adjustment to the ratings sum based on the given
|
|
// consistency_info. The paths with invalid punctuation, inconsistent
|
|
// case and character type are penalized proportionally to the number
|
|
// of inconsistencies on the path.
|
|
inline float ComputeConsistencyAdjustment(
|
|
const LanguageModelDawgInfo *dawg_info,
|
|
const LMConsistencyInfo &consistency_info) {
|
|
if (dawg_info != NULL) {
|
|
return ComputeAdjustment(consistency_info.NumInconsistentCase(),
|
|
language_model_penalty_case) +
|
|
(consistency_info.inconsistent_script ?
|
|
language_model_penalty_script : 0.0f);
|
|
}
|
|
return (ComputeAdjustment(consistency_info.NumInconsistentPunc(),
|
|
language_model_penalty_punc) +
|
|
ComputeAdjustment(consistency_info.NumInconsistentCase(),
|
|
language_model_penalty_case) +
|
|
ComputeAdjustment(consistency_info.NumInconsistentChartype(),
|
|
language_model_penalty_chartype) +
|
|
ComputeAdjustment(consistency_info.NumInconsistentSpaces(),
|
|
language_model_penalty_spacing) +
|
|
(consistency_info.inconsistent_script ?
|
|
language_model_penalty_script : 0.0f) +
|
|
(consistency_info.inconsistent_font ?
|
|
language_model_penalty_font : 0.0f));
|
|
}
|
|
|
|
// Returns an adjusted ratings sum that includes inconsistency penalties,
|
|
// penalties for non-dictionary paths and paths with dips in ngram
|
|
// probability.
|
|
float ComputeAdjustedPathCost(ViterbiStateEntry *vse);
|
|
|
|
// Finds the first lower and upper case letter and first digit in curr_list.
|
|
// Uses the first character in the list in place of empty results.
|
|
// Returns true if both alpha and digits are found.
|
|
bool GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list,
|
|
BLOB_CHOICE **first_lower,
|
|
BLOB_CHOICE **first_upper,
|
|
BLOB_CHOICE **first_digit) const;
|
|
// Forces there to be at least one entry in the overall set of the
|
|
// viterbi_state_entries of each element of parent_node that has the
|
|
// top_choice_flag set for lower, upper and digit using the same rules as
|
|
// GetTopLowerUpperDigit, setting the flag on the first found suitable
|
|
// candidate, whether or not the flag is set on some other parent.
|
|
// Returns 1 if both alpha and digits are found among the parents, -1 if no
|
|
// parents are found at all (a legitimate case), and 0 otherwise.
|
|
int SetTopParentLowerUpperDigit(LanguageModelState *parent_node) const;
|
|
|
|
// Finds the next ViterbiStateEntry with which the given unichar_id can
|
|
// combine sensibly, taking into account any mixed alnum/mixed case
|
|
// situation, and whether this combination has been inspected before.
|
|
ViterbiStateEntry* GetNextParentVSE(
|
|
bool just_classified, bool mixed_alnum,
|
|
const BLOB_CHOICE* bc, LanguageModelFlagsType blob_choice_flags,
|
|
const UNICHARSET& unicharset, WERD_RES* word_res,
|
|
ViterbiStateEntry_IT* vse_it,
|
|
LanguageModelFlagsType* top_choice_flags) const;
|
|
// Helper function that computes the cost of the path composed of the
|
|
// path in the given parent ViterbiStateEntry and the given BLOB_CHOICE.
|
|
// If the new path looks good enough, adds a new ViterbiStateEntry to the
|
|
// list of viterbi entries in the given BLOB_CHOICE and returns true.
|
|
bool AddViterbiStateEntry(
|
|
LanguageModelFlagsType top_choice_flags, float denom, bool word_end,
|
|
int curr_col, int curr_row, BLOB_CHOICE *b,
|
|
LanguageModelState *curr_state, ViterbiStateEntry *parent_vse,
|
|
LMPainPoints *pain_points, WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle);
|
|
|
|
// Determines whether a potential entry is a true top choice and
|
|
// updates changed accordingly.
|
|
//
|
|
// Note: The function assumes that b, top_choice_flags and changed
|
|
// are not NULL.
|
|
void GenerateTopChoiceInfo(ViterbiStateEntry *new_vse,
|
|
const ViterbiStateEntry *parent_vse,
|
|
LanguageModelState *lms);
|
|
|
|
// Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and
|
|
// unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo
|
|
// with updated active dawgs, constraints and permuter.
|
|
//
|
|
// Note: the caller is responsible for deleting the returned pointer.
|
|
LanguageModelDawgInfo *GenerateDawgInfo(bool word_end,
|
|
int curr_col, int curr_row,
|
|
const BLOB_CHOICE &b,
|
|
const ViterbiStateEntry *parent_vse);
|
|
|
|
// Computes p(unichar | parent context) and records it in ngram_cost.
|
|
// If b.unichar_id() is an unlikely continuation of the parent context
|
|
// sets found_small_prob to true and returns NULL.
|
|
// Otherwise creates a new LanguageModelNgramInfo entry containing the
|
|
// updated context (that includes b.unichar_id() at the end) and returns it.
|
|
//
|
|
// Note: the caller is responsible for deleting the returned pointer.
|
|
LanguageModelNgramInfo *GenerateNgramInfo(
|
|
const char *unichar, float certainty, float denom,
|
|
int curr_col, int curr_row, float outline_length,
|
|
const ViterbiStateEntry *parent_vse);
|
|
|
|
// Computes -(log(prob(classifier)) + log(prob(ngram model)))
|
|
// for the given unichar in the given context. If there are multiple
|
|
// unichars at one position - takes the average of their probabilities.
|
|
// UNICHAR::utf8_step() is used to separate out individual UTF8 characters,
|
|
// since probability_in_context() can only handle one at a time (while
|
|
// unicharset might contain ngrams and glyphs composed from multiple UTF8
|
|
// characters).
|
|
float ComputeNgramCost(const char *unichar, float certainty, float denom,
|
|
const char *context, int *unichar_step_len,
|
|
bool *found_small_prob, float *ngram_prob);
|
|
|
|
// Computes the normalization factors for the classifier confidences
|
|
// (used by ComputeNgramCost()).
|
|
float ComputeDenom(BLOB_CHOICE_LIST *curr_list);
|
|
|
|
// Fills the given consistenty_info based on parent_vse.consistency_info
|
|
// and on the consistency of the given unichar_id with parent_vse.
|
|
void FillConsistencyInfo(
|
|
int curr_col, bool word_end, BLOB_CHOICE *b,
|
|
ViterbiStateEntry *parent_vse,
|
|
WERD_RES *word_res,
|
|
LMConsistencyInfo *consistency_info);
|
|
|
|
// Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs
|
|
// on the path represented by the given BLOB_CHOICE and language model
|
|
// state entries (lmse, dse). The path is re-constructed by following
|
|
// the parent pointers in the the lang model state entries). If the
|
|
// constructed WERD_CHOICE is better than the best/raw choice recorded
|
|
// in the best_choice_bundle, this function updates the corresponding
|
|
// fields and sets best_choice_bunldle->updated to true.
|
|
void UpdateBestChoice(ViterbiStateEntry *vse,
|
|
LMPainPoints *pain_points,
|
|
WERD_RES *word_res,
|
|
BestChoiceBundle *best_choice_bundle,
|
|
BlamerBundle *blamer_bundle);
|
|
|
|
// Constructs a WERD_CHOICE by tracing parent pointers starting with
|
|
// the given LanguageModelStateEntry. Returns the constructed word.
|
|
// Updates best_char_choices, certainties and state if they are not
|
|
// NULL (best_char_choices and certainties are assumed to have the
|
|
// length equal to lmse->length).
|
|
// The caller is responsible for freeing memory associated with the
|
|
// returned WERD_CHOICE.
|
|
WERD_CHOICE *ConstructWord(ViterbiStateEntry *vse,
|
|
WERD_RES *word_res,
|
|
DANGERR *fixpt,
|
|
BlamerBundle *blamer_bundle,
|
|
bool *truth_path);
|
|
|
|
// Wrapper around AssociateUtils::ComputeStats().
|
|
inline void ComputeAssociateStats(int col, int row,
|
|
float max_char_wh_ratio,
|
|
ViterbiStateEntry *parent_vse,
|
|
WERD_RES *word_res,
|
|
AssociateStats *associate_stats) {
|
|
AssociateUtils::ComputeStats(
|
|
col, row,
|
|
(parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL,
|
|
(parent_vse != NULL) ? parent_vse->length : 0,
|
|
fixed_pitch_, max_char_wh_ratio,
|
|
word_res, language_model_debug_level > 2, associate_stats);
|
|
}
|
|
|
|
// Returns true if the path with such top_choice_flags and dawg_info
|
|
// could be pruned out (i.e. is neither a system/user/frequent dictionary
|
|
// nor a top choice path).
|
|
// In non-space delimited languages all paths can be "somewhat" dictionary
|
|
// words. In such languages we can not do dictionary-driven path pruning,
|
|
// so paths with non-empty dawg_info are considered prunable.
|
|
inline bool PrunablePath(const ViterbiStateEntry &vse) {
|
|
if (vse.top_choice_flags) return false;
|
|
if (vse.dawg_info != NULL &&
|
|
(vse.dawg_info->permuter == SYSTEM_DAWG_PERM ||
|
|
vse.dawg_info->permuter == USER_DAWG_PERM ||
|
|
vse.dawg_info->permuter == FREQ_DAWG_PERM)) return false;
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the given ViterbiStateEntry represents an acceptable path.
|
|
inline bool AcceptablePath(const ViterbiStateEntry &vse) {
|
|
return (vse.dawg_info != NULL || vse.Consistent() ||
|
|
(vse.ngram_info != NULL && !vse.ngram_info->pruned));
|
|
}
|
|
|
|
public:
|
|
// Parameters.
|
|
INT_VAR_H(language_model_debug_level, 0, "Language model debug level");
|
|
BOOL_VAR_H(language_model_ngram_on, false,
|
|
"Turn on/off the use of character ngram model");
|
|
INT_VAR_H(language_model_ngram_order, 8,
|
|
"Maximum order of the character ngram model");
|
|
INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10,
|
|
"Maximum number of prunable (those for which PrunablePath() is"
|
|
" true) entries in each viterbi list recorded in BLOB_CHOICEs");
|
|
INT_VAR_H(language_model_viterbi_list_max_size, 500,
|
|
"Maximum size of viterbi lists recorded in BLOB_CHOICEs");
|
|
double_VAR_H(language_model_ngram_small_prob, 0.000001,
|
|
"To avoid overly small denominators use this as the floor"
|
|
" of the probability returned by the ngram model");
|
|
double_VAR_H(language_model_ngram_nonmatch_score, -40.0,
|
|
"Average classifier score of a non-matching unichar");
|
|
BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false,
|
|
"Use only the first UTF8 step of the given string"
|
|
" when computing log probabilities");
|
|
double_VAR_H(language_model_ngram_scale_factor, 0.03,
|
|
"Strength of the character ngram model relative to the"
|
|
" character classifier ");
|
|
double_VAR_H(language_model_ngram_rating_factor, 16.0,
|
|
"Factor to bring log-probs into the same range as ratings"
|
|
" when multiplied by outline length ");
|
|
BOOL_VAR_H(language_model_ngram_space_delimited_language, true,
|
|
"Words are delimited by space");
|
|
INT_VAR_H(language_model_min_compound_length, 3,
|
|
"Minimum length of compound words");
|
|
// Penalties used for adjusting path costs and final word rating.
|
|
double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1,
|
|
"Penalty for words not in the frequent word dictionary");
|
|
double_VAR_H(language_model_penalty_non_dict_word, 0.15,
|
|
"Penalty for non-dictionary words");
|
|
double_VAR_H(language_model_penalty_punc, 0.2,
|
|
"Penalty for inconsistent punctuation");
|
|
double_VAR_H(language_model_penalty_case, 0.1,
|
|
"Penalty for inconsistent case");
|
|
double_VAR_H(language_model_penalty_script, 0.5,
|
|
"Penalty for inconsistent script");
|
|
double_VAR_H(language_model_penalty_chartype, 0.3,
|
|
"Penalty for inconsistent character type");
|
|
double_VAR_H(language_model_penalty_font, 0.00,
|
|
"Penalty for inconsistent font");
|
|
double_VAR_H(language_model_penalty_spacing, 0.05,
|
|
"Penalty for inconsistent spacing");
|
|
double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment");
|
|
INT_VAR_H(wordrec_display_segmentations, 0, "Display Segmentations");
|
|
BOOL_VAR_H(language_model_use_sigmoidal_certainty, false,
|
|
"Use sigmoidal score for certainty");
|
|
|
|
|
|
protected:
|
|
// Member Variables.
|
|
|
|
// Temporary DawgArgs struct that is re-used across different words to
|
|
// avoid dynamic memory re-allocation (should be cleared before each use).
|
|
DawgArgs dawg_args_;
|
|
// Scaling for recovering blob outline length from rating and certainty.
|
|
float rating_cert_scale_;
|
|
|
|
// The following variables are set at construction time.
|
|
|
|
// Pointer to fontinfo table (not owned by LanguageModel).
|
|
const UnicityTable<FontInfo> *fontinfo_table_;
|
|
|
|
// Pointer to Dict class, that is used for querying the dictionaries
|
|
// (the pointer is not owned by LanguageModel).
|
|
Dict *dict_;
|
|
|
|
// TODO(daria): the following variables should become LanguageModel params
|
|
// when the old code in bestfirst.cpp and heuristic.cpp is deprecated.
|
|
//
|
|
// Set to true if we are dealing with fixed pitch text
|
|
// (set to assume_fixed_pitch_char_segment).
|
|
bool fixed_pitch_;
|
|
// Max char width-to-height ratio allowed
|
|
// (set to segsearch_max_char_wh_ratio).
|
|
float max_char_wh_ratio_;
|
|
|
|
// The following variables are initialized with InitForWord().
|
|
|
|
// String representation of the classification of the previous word
|
|
// (since this is only used by the character ngram model component,
|
|
// only the last language_model_ngram_order of the word are stored).
|
|
STRING prev_word_str_;
|
|
int prev_word_unichar_step_len_;
|
|
// Active dawg vector.
|
|
DawgPositionVector very_beginning_active_dawgs_; // includes continuation
|
|
DawgPositionVector beginning_active_dawgs_;
|
|
// Set to true if acceptable choice was discovered.
|
|
// Note: it would be nice to use this to terminate the search once an
|
|
// acceptable choices is found. However we do not do that and once an
|
|
// acceptable choice is found we finish looking for alternative choices
|
|
// in the current segmentation graph and then exit the search (no more
|
|
// classifications are done after an acceptable choice is found).
|
|
// This is needed in order to let the search find the words very close to
|
|
// the best choice in rating (e.g. what/What, Cat/cat, etc) and log these
|
|
// choices. This way the stopper will know that the best choice is not
|
|
// ambiguous (i.e. there are best choices in the best choice list that have
|
|
// ratings close to the very best one) and will be less likely to mis-adapt.
|
|
bool acceptable_choice_found_;
|
|
// Set to true if a choice representing correct segmentation was explored.
|
|
bool correct_segmentation_explored_;
|
|
|
|
// Params models containing weights for for computing ViterbiStateEntry costs.
|
|
ParamsModel params_model_;
|
|
};
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_WORDREC_LANGUAGE_MODEL_H_
|