mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-12 15:39:04 +08:00
135 lines
5.4 KiB
C++
135 lines
5.4 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: fullyconnected.h
|
|
// Description: Simple feed-forward layer with various non-linearities.
|
|
// Author: Ray Smith
|
|
// Created: Wed Feb 26 14:46:06 PST 2014
|
|
//
|
|
// (C) Copyright 2014, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_LSTM_FULLYCONNECTED_H_
|
|
#define TESSERACT_LSTM_FULLYCONNECTED_H_
|
|
|
|
#include "network.h"
|
|
#include "networkscratch.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// C++ Implementation of the Softmax (output) class from lstm.py.
|
|
class FullyConnected : public Network {
|
|
public:
|
|
FullyConnected(const STRING& name, int ni, int no, NetworkType type);
|
|
virtual ~FullyConnected();
|
|
|
|
// Returns the shape output from the network given an input shape (which may
|
|
// be partially unknown ie zero).
|
|
virtual StaticShape OutputShape(const StaticShape& input_shape) const;
|
|
|
|
virtual STRING spec() const {
|
|
STRING spec;
|
|
if (type_ == NT_TANH)
|
|
spec.add_str_int("Ft", no_);
|
|
else if (type_ == NT_LOGISTIC)
|
|
spec.add_str_int("Fs", no_);
|
|
else if (type_ == NT_RELU)
|
|
spec.add_str_int("Fr", no_);
|
|
else if (type_ == NT_LINEAR)
|
|
spec.add_str_int("Fl", no_);
|
|
else if (type_ == NT_POSCLIP)
|
|
spec.add_str_int("Fp", no_);
|
|
else if (type_ == NT_SYMCLIP)
|
|
spec.add_str_int("Fs", no_);
|
|
else if (type_ == NT_SOFTMAX)
|
|
spec.add_str_int("Fc", no_);
|
|
else
|
|
spec.add_str_int("Fm", no_);
|
|
return spec;
|
|
}
|
|
|
|
// Changes the type to the given type. Used to commute a softmax to a
|
|
// non-output type for adding on other networks.
|
|
void ChangeType(NetworkType type) {
|
|
type_ = type;
|
|
}
|
|
|
|
// Suspends/Enables training by setting the training_ flag. Serialize and
|
|
// DeSerialize only operate on the run-time data if state is false.
|
|
virtual void SetEnableTraining(TrainingState state);
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
virtual int InitWeights(float range, TRand* randomizer);
|
|
|
|
// Converts a float network to an int network.
|
|
virtual void ConvertToInt();
|
|
|
|
// Provides debug output on the weights.
|
|
virtual void DebugWeights();
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
virtual bool Serialize(TFile* fp) const;
|
|
// Reads from the given file. Returns false in case of error.
|
|
// If swap is true, assumes a big/little-endian swap is needed.
|
|
virtual bool DeSerialize(bool swap, TFile* fp);
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
// See Network for a detailed discussion of the arguments.
|
|
virtual void Forward(bool debug, const NetworkIO& input,
|
|
const TransposedArray* input_transpose,
|
|
NetworkScratch* scratch, NetworkIO* output);
|
|
// Components of Forward so FullyConnected can be reused inside LSTM.
|
|
void SetupForward(const NetworkIO& input,
|
|
const TransposedArray* input_transpose);
|
|
void ForwardTimeStep(const double* d_input, const inT8* i_input, int t,
|
|
double* output_line);
|
|
|
|
// Runs backward propagation of errors on the deltas line.
|
|
// See Network for a detailed discussion of the arguments.
|
|
virtual bool Backward(bool debug, const NetworkIO& fwd_deltas,
|
|
NetworkScratch* scratch,
|
|
NetworkIO* back_deltas);
|
|
// Components of Backward so FullyConnected can be reused inside LSTM.
|
|
void BackwardTimeStep(const NetworkIO& fwd_deltas, int t, double* curr_errors,
|
|
TransposedArray* errors_t, double* backprop);
|
|
void FinishBackward(const TransposedArray& errors_t);
|
|
|
|
// Updates the weights using the given learning rate and momentum.
|
|
// num_samples is the quotient to be used in the adagrad computation iff
|
|
// use_ada_grad_ is true.
|
|
virtual void Update(float learning_rate, float momentum, int num_samples);
|
|
// Sums the products of weight updates in *this and other, splitting into
|
|
// positive (same direction) in *same and negative (different direction) in
|
|
// *changed.
|
|
virtual void CountAlternators(const Network& other, double* same,
|
|
double* changed) const;
|
|
|
|
protected:
|
|
// Weight arrays of size [no, ni + 1].
|
|
WeightMatrix weights_;
|
|
// Transposed copy of input used during training of size [ni, width].
|
|
TransposedArray source_t_;
|
|
// Pointer to transposed input stored elsewhere. If not null, this is used
|
|
// in preference to calculating the transpose and storing it in source_t_.
|
|
const TransposedArray* external_source_;
|
|
// Activations from forward pass of size [width, no].
|
|
NetworkIO acts_;
|
|
// Memory of the integer mode input to forward as softmax always outputs
|
|
// float, so the information is otherwise lost.
|
|
bool int_mode_;
|
|
};
|
|
|
|
} // namespace tesseract.
|
|
|
|
|
|
|
|
#endif // TESSERACT_LSTM_FULLYCONNECTED_H_
|