tesseract/src/ccutil/elst.cpp
Stefan Weil df227caa87 Add function ERRCODE::error with only 2 parameters
Signed-off-by: Stefan Weil <sw@weilnetz.de>
2021-12-30 18:46:48 +01:00

441 lines
14 KiB
C++

/**********************************************************************
* File: elst.cpp (Formerly elist.c)
* Description: Embedded list handling code which is not in the include file.
* Author: Phil Cheatle
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "elst.h"
#include <cstdlib>
namespace tesseract {
/***********************************************************************
* ELIST::internal_clear
*
* Used by the destructor and the "clear" member function of derived list
* classes to destroy all the elements on the list.
* The calling function passes a "zapper" function which can be called to
* delete each element of the list, regardless of its derived type. This
* technique permits a generic clear function to destroy elements of
* different derived types correctly, without requiring virtual functions and
* the consequential memory overhead.
**********************************************************************/
void ELIST::internal_clear( // destroy all links
void (*zapper)(void *)) {
// ptr to zapper functn
ELIST_LINK *ptr;
ELIST_LINK *next;
if (!empty()) {
ptr = last->next; // set to first
last->next = nullptr; // break circle
last = nullptr; // set list empty
while (ptr) {
next = ptr->next;
zapper(ptr);
ptr = next;
}
}
}
/***********************************************************************
* ELIST::assign_to_sublist
*
* The list is set to a sublist of another list. "This" list must be empty
* before this function is invoked. The two iterators passed must refer to
* the same list, different from "this" one. The sublist removed is the
* inclusive list from start_it's current position to end_it's current
* position. If this range passes over the end of the source list then the
* source list has its end set to the previous element of start_it. The
* extracted sublist is unaffected by the end point of the source list, its
* end point is always the end_it position.
**********************************************************************/
void ELIST::assign_to_sublist( // to this list
ELIST_ITERATOR *start_it, // from list start
ELIST_ITERATOR *end_it) { // from list end
constexpr ERRCODE LIST_NOT_EMPTY("Destination list must be empty before extracting a sublist");
if (!empty()) {
LIST_NOT_EMPTY.error("ELIST.assign_to_sublist", ABORT);
}
last = start_it->extract_sublist(end_it);
}
/***********************************************************************
* ELIST::sort
*
* Sort elements on list
* NB If you don't like the const declarations in the comparator, coerce yours:
* ( int (*)(const void *, const void *)
**********************************************************************/
void ELIST::sort( // sort elements
int comparator( // comparison routine
const void *, const void *)) {
// Allocate an array of pointers, one per list element.
auto count = length();
if (count > 0) {
// ptr array to sort
std::vector<ELIST_LINK *> base;
base.reserve(count);
ELIST_ITERATOR it(this);
// Extract all elements, putting the pointers in the array.
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
base.push_back(it.extract());
}
// Sort the pointer array.
qsort(&base[0], count, sizeof(base[0]), comparator);
// Rebuild the list from the sorted pointers.
for (auto current : base) {
it.add_to_end(current);
}
}
}
// Assuming list has been sorted already, insert new_link to
// keep the list sorted according to the same comparison function.
// Comparison function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
// If unique is set to true and comparator() returns 0 (an entry with the
// same information as the one contained in new_link is already in the
// list) - new_link is not added to the list and the function returns the
// pointer to the identical entry that already exists in the list
// (otherwise the function returns new_link).
ELIST_LINK *ELIST::add_sorted_and_find(int comparator(const void *, const void *), bool unique,
ELIST_LINK *new_link) {
// Check for adding at the end.
if (last == nullptr || comparator(&last, &new_link) < 0) {
if (last == nullptr) {
new_link->next = new_link;
} else {
new_link->next = last->next;
last->next = new_link;
}
last = new_link;
} else {
// Need to use an iterator.
ELIST_ITERATOR it(this);
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
ELIST_LINK *link = it.data();
int compare = comparator(&link, &new_link);
if (compare > 0) {
break;
} else if (unique && compare == 0) {
return link;
}
}
if (it.cycled_list()) {
it.add_to_end(new_link);
} else {
it.add_before_then_move(new_link);
}
}
return new_link;
}
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: ELIST_ITERATOR
* =========================================
**********************************************************************/
/***********************************************************************
* ELIST_ITERATOR::forward
*
* Move the iterator to the next element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::forward() {
#ifndef NDEBUG
if (!list)
NO_LIST.error("ELIST_ITERATOR::forward", ABORT);
#endif
if (list->empty()) {
return nullptr;
}
if (current) { // not removed so
// set previous
prev = current;
started_cycling = true;
// In case next is deleted by another iterator, get next from current.
current = current->next;
} else {
if (ex_current_was_cycle_pt) {
cycle_pt = next;
}
current = next;
}
#ifndef NDEBUG
if (!current)
NULL_DATA.error("ELIST_ITERATOR::forward", ABORT);
#endif
next = current->next;
#ifndef NDEBUG
if (!next) {
NULL_NEXT.error("ELIST_ITERATOR::forward", ABORT,
"This is: %p Current is: %p",
static_cast<void *>(this),
static_cast<void *>(current));
}
#endif
return current;
}
/***********************************************************************
* ELIST_ITERATOR::data_relative
*
* Return the data pointer to the element "offset" elements from current.
* "offset" must not be less than -1.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::data_relative( // get data + or - ...
int8_t offset) { // offset from current
ELIST_LINK *ptr;
#ifndef NDEBUG
if (!list)
NO_LIST.error("ELIST_ITERATOR::data_relative", ABORT);
if (list->empty())
EMPTY_LIST.error("ELIST_ITERATOR::data_relative", ABORT);
if (offset < -1)
BAD_PARAMETER.error("ELIST_ITERATOR::data_relative", ABORT, "offset < -l");
#endif
if (offset == -1) {
ptr = prev;
} else {
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next) {
;
}
}
#ifndef NDEBUG
if (!ptr)
NULL_DATA.error("ELIST_ITERATOR::data_relative", ABORT);
#endif
return ptr;
}
/***********************************************************************
* ELIST_ITERATOR::move_to_last()
*
* Move current so that it is set to the end of the list.
* Return data just in case anyone wants it.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::move_to_last() {
#ifndef NDEBUG
if (!list)
NO_LIST.error("ELIST_ITERATOR::move_to_last", ABORT);
#endif
while (current != list->last) {
forward();
}
return current;
}
/***********************************************************************
* ELIST_ITERATOR::exchange()
*
* Given another iterator, whose current element is a different element on
* the same list list OR an element of another list, exchange the two current
* elements. On return, each iterator points to the element which was the
* other iterators current on entry.
* (This function hasn't been in-lined because its a bit big!)
**********************************************************************/
void ELIST_ITERATOR::exchange( // positions of 2 links
ELIST_ITERATOR *other_it) { // other iterator
constexpr ERRCODE DONT_EXCHANGE_DELETED("Can't exchange deleted elements of lists");
ELIST_LINK *old_current;
#ifndef NDEBUG
if (!list)
NO_LIST.error("ELIST_ITERATOR::exchange", ABORT);
if (!other_it)
BAD_PARAMETER.error("ELIST_ITERATOR::exchange", ABORT, "other_it nullptr");
if (!(other_it->list))
NO_LIST.error("ELIST_ITERATOR::exchange", ABORT, "other_it");
#endif
/* Do nothing if either list is empty or if both iterators reference the same
link */
if ((list->empty()) || (other_it->list->empty()) || (current == other_it->current)) {
return;
}
/* Error if either current element is deleted */
if (!current || !other_it->current) {
DONT_EXCHANGE_DELETED.error("ELIST_ITERATOR.exchange", ABORT);
}
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
(other before this); non-doubleton adjacent elements (this before other);
non-adjacent elements. */
// adjacent links
if ((next == other_it->current) || (other_it->next == current)) {
// doubleton list
if ((next == other_it->current) && (other_it->next == current)) {
prev = next = current;
other_it->prev = other_it->next = other_it->current;
} else { // non-doubleton with
// adjacent links
// other before this
if (other_it->next == current) {
other_it->prev->next = current;
other_it->current->next = next;
current->next = other_it->current;
other_it->next = other_it->current;
prev = current;
} else { // this before other
prev->next = other_it->current;
current->next = other_it->next;
other_it->current->next = current;
next = current;
other_it->prev = other_it->current;
}
}
} else { // no overlap
prev->next = other_it->current;
current->next = other_it->next;
other_it->prev->next = current;
other_it->current->next = next;
}
/* update end of list pointer when necessary (remember that the 2 iterators
may iterate over different lists!) */
if (list->last == current) {
list->last = other_it->current;
}
if (other_it->list->last == other_it->current) {
other_it->list->last = current;
}
if (current == cycle_pt) {
cycle_pt = other_it->cycle_pt;
}
if (other_it->current == other_it->cycle_pt) {
other_it->cycle_pt = cycle_pt;
}
/* The actual exchange - in all cases*/
old_current = current;
current = other_it->current;
other_it->current = old_current;
}
/***********************************************************************
* ELIST_ITERATOR::extract_sublist()
*
* This is a private member, used only by ELIST::assign_to_sublist.
* Given another iterator for the same list, extract the links from THIS to
* OTHER inclusive, link them into a new circular list, and return a
* pointer to the last element.
* (Can't inline this function because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::extract_sublist( // from this current
ELIST_ITERATOR *other_it) { // to other current
#ifndef NDEBUG
constexpr ERRCODE BAD_EXTRACTION_PTS("Can't extract sublist from points on different lists");
constexpr ERRCODE DONT_EXTRACT_DELETED("Can't extract a sublist marked by deleted points");
#endif
constexpr ERRCODE BAD_SUBLIST("Can't find sublist end point in original list");
ELIST_ITERATOR temp_it = *this;
ELIST_LINK *end_of_new_list;
#ifndef NDEBUG
if (!other_it)
BAD_PARAMETER.error("ELIST_ITERATOR::extract_sublist", ABORT, "other_it nullptr");
if (!list)
NO_LIST.error("ELIST_ITERATOR::extract_sublist", ABORT);
if (list != other_it->list)
BAD_EXTRACTION_PTS.error("ELIST_ITERATOR.extract_sublist", ABORT);
if (list->empty())
EMPTY_LIST.error("ELIST_ITERATOR::extract_sublist", ABORT);
if (!current || !other_it->current)
DONT_EXTRACT_DELETED.error("ELIST_ITERATOR.extract_sublist", ABORT);
#endif
ex_current_was_last = other_it->ex_current_was_last = false;
ex_current_was_cycle_pt = false;
other_it->ex_current_was_cycle_pt = false;
temp_it.mark_cycle_pt();
do { // walk sublist
if (temp_it.cycled_list()) { // can't find end pt
BAD_SUBLIST.error("ELIST_ITERATOR.extract_sublist", ABORT);
}
if (temp_it.at_last()) {
list->last = prev;
ex_current_was_last = other_it->ex_current_was_last = true;
}
if (temp_it.current == cycle_pt) {
ex_current_was_cycle_pt = true;
}
if (temp_it.current == other_it->cycle_pt) {
other_it->ex_current_was_cycle_pt = true;
}
temp_it.forward();
} while (temp_it.prev != other_it->current);
// circularise sublist
other_it->current->next = current;
end_of_new_list = other_it->current;
// sublist = whole list
if (prev == other_it->current) {
list->last = nullptr;
prev = current = next = nullptr;
other_it->prev = other_it->current = other_it->next = nullptr;
} else {
prev->next = other_it->next;
current = other_it->current = nullptr;
next = other_it->next;
other_it->prev = prev;
}
return end_of_new_list;
}
} // namespace tesseract