mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-06-07 18:02:40 +08:00
441 lines
14 KiB
C++
441 lines
14 KiB
C++
/**********************************************************************
|
|
* File: elst.cpp (Formerly elist.c)
|
|
* Description: Embedded list handling code which is not in the include file.
|
|
* Author: Phil Cheatle
|
|
*
|
|
* (C) Copyright 1991, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "elst.h"
|
|
#include <cstdlib>
|
|
|
|
namespace tesseract {
|
|
|
|
/***********************************************************************
|
|
* ELIST::internal_clear
|
|
*
|
|
* Used by the destructor and the "clear" member function of derived list
|
|
* classes to destroy all the elements on the list.
|
|
* The calling function passes a "zapper" function which can be called to
|
|
* delete each element of the list, regardless of its derived type. This
|
|
* technique permits a generic clear function to destroy elements of
|
|
* different derived types correctly, without requiring virtual functions and
|
|
* the consequential memory overhead.
|
|
**********************************************************************/
|
|
|
|
void ELIST::internal_clear( // destroy all links
|
|
void (*zapper)(void *)) {
|
|
// ptr to zapper functn
|
|
ELIST_LINK *ptr;
|
|
ELIST_LINK *next;
|
|
|
|
if (!empty()) {
|
|
ptr = last->next; // set to first
|
|
last->next = nullptr; // break circle
|
|
last = nullptr; // set list empty
|
|
while (ptr) {
|
|
next = ptr->next;
|
|
zapper(ptr);
|
|
ptr = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST::assign_to_sublist
|
|
*
|
|
* The list is set to a sublist of another list. "This" list must be empty
|
|
* before this function is invoked. The two iterators passed must refer to
|
|
* the same list, different from "this" one. The sublist removed is the
|
|
* inclusive list from start_it's current position to end_it's current
|
|
* position. If this range passes over the end of the source list then the
|
|
* source list has its end set to the previous element of start_it. The
|
|
* extracted sublist is unaffected by the end point of the source list, its
|
|
* end point is always the end_it position.
|
|
**********************************************************************/
|
|
|
|
void ELIST::assign_to_sublist( // to this list
|
|
ELIST_ITERATOR *start_it, // from list start
|
|
ELIST_ITERATOR *end_it) { // from list end
|
|
constexpr ERRCODE LIST_NOT_EMPTY("Destination list must be empty before extracting a sublist");
|
|
|
|
if (!empty()) {
|
|
LIST_NOT_EMPTY.error("ELIST.assign_to_sublist", ABORT);
|
|
}
|
|
|
|
last = start_it->extract_sublist(end_it);
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST::sort
|
|
*
|
|
* Sort elements on list
|
|
* NB If you don't like the const declarations in the comparator, coerce yours:
|
|
* ( int (*)(const void *, const void *)
|
|
**********************************************************************/
|
|
|
|
void ELIST::sort( // sort elements
|
|
int comparator( // comparison routine
|
|
const void *, const void *)) {
|
|
// Allocate an array of pointers, one per list element.
|
|
auto count = length();
|
|
|
|
if (count > 0) {
|
|
// ptr array to sort
|
|
std::vector<ELIST_LINK *> base;
|
|
base.reserve(count);
|
|
|
|
ELIST_ITERATOR it(this);
|
|
|
|
// Extract all elements, putting the pointers in the array.
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
base.push_back(it.extract());
|
|
}
|
|
|
|
// Sort the pointer array.
|
|
qsort(&base[0], count, sizeof(base[0]), comparator);
|
|
|
|
// Rebuild the list from the sorted pointers.
|
|
for (auto current : base) {
|
|
it.add_to_end(current);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Assuming list has been sorted already, insert new_link to
|
|
// keep the list sorted according to the same comparison function.
|
|
// Comparison function is the same as used by sort, i.e. uses double
|
|
// indirection. Time is O(1) to add to beginning or end.
|
|
// Time is linear to add pre-sorted items to an empty list.
|
|
// If unique is set to true and comparator() returns 0 (an entry with the
|
|
// same information as the one contained in new_link is already in the
|
|
// list) - new_link is not added to the list and the function returns the
|
|
// pointer to the identical entry that already exists in the list
|
|
// (otherwise the function returns new_link).
|
|
ELIST_LINK *ELIST::add_sorted_and_find(int comparator(const void *, const void *), bool unique,
|
|
ELIST_LINK *new_link) {
|
|
// Check for adding at the end.
|
|
if (last == nullptr || comparator(&last, &new_link) < 0) {
|
|
if (last == nullptr) {
|
|
new_link->next = new_link;
|
|
} else {
|
|
new_link->next = last->next;
|
|
last->next = new_link;
|
|
}
|
|
last = new_link;
|
|
} else {
|
|
// Need to use an iterator.
|
|
ELIST_ITERATOR it(this);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ELIST_LINK *link = it.data();
|
|
int compare = comparator(&link, &new_link);
|
|
if (compare > 0) {
|
|
break;
|
|
} else if (unique && compare == 0) {
|
|
return link;
|
|
}
|
|
}
|
|
if (it.cycled_list()) {
|
|
it.add_to_end(new_link);
|
|
} else {
|
|
it.add_before_then_move(new_link);
|
|
}
|
|
}
|
|
return new_link;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* MEMBER FUNCTIONS OF CLASS: ELIST_ITERATOR
|
|
* =========================================
|
|
**********************************************************************/
|
|
|
|
/***********************************************************************
|
|
* ELIST_ITERATOR::forward
|
|
*
|
|
* Move the iterator to the next element of the list.
|
|
* REMEMBER: ALL LISTS ARE CIRCULAR.
|
|
**********************************************************************/
|
|
|
|
ELIST_LINK *ELIST_ITERATOR::forward() {
|
|
#ifndef NDEBUG
|
|
if (!list)
|
|
NO_LIST.error("ELIST_ITERATOR::forward", ABORT);
|
|
#endif
|
|
if (list->empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (current) { // not removed so
|
|
// set previous
|
|
prev = current;
|
|
started_cycling = true;
|
|
// In case next is deleted by another iterator, get next from current.
|
|
current = current->next;
|
|
} else {
|
|
if (ex_current_was_cycle_pt) {
|
|
cycle_pt = next;
|
|
}
|
|
current = next;
|
|
}
|
|
#ifndef NDEBUG
|
|
if (!current)
|
|
NULL_DATA.error("ELIST_ITERATOR::forward", ABORT);
|
|
#endif
|
|
next = current->next;
|
|
|
|
#ifndef NDEBUG
|
|
if (!next) {
|
|
NULL_NEXT.error("ELIST_ITERATOR::forward", ABORT,
|
|
"This is: %p Current is: %p",
|
|
static_cast<void *>(this),
|
|
static_cast<void *>(current));
|
|
}
|
|
#endif
|
|
return current;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST_ITERATOR::data_relative
|
|
*
|
|
* Return the data pointer to the element "offset" elements from current.
|
|
* "offset" must not be less than -1.
|
|
* (This function can't be INLINEd because it contains a loop)
|
|
**********************************************************************/
|
|
|
|
ELIST_LINK *ELIST_ITERATOR::data_relative( // get data + or - ...
|
|
int8_t offset) { // offset from current
|
|
ELIST_LINK *ptr;
|
|
|
|
#ifndef NDEBUG
|
|
if (!list)
|
|
NO_LIST.error("ELIST_ITERATOR::data_relative", ABORT);
|
|
if (list->empty())
|
|
EMPTY_LIST.error("ELIST_ITERATOR::data_relative", ABORT);
|
|
if (offset < -1)
|
|
BAD_PARAMETER.error("ELIST_ITERATOR::data_relative", ABORT, "offset < -l");
|
|
#endif
|
|
|
|
if (offset == -1) {
|
|
ptr = prev;
|
|
} else {
|
|
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next) {
|
|
;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (!ptr)
|
|
NULL_DATA.error("ELIST_ITERATOR::data_relative", ABORT);
|
|
#endif
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST_ITERATOR::move_to_last()
|
|
*
|
|
* Move current so that it is set to the end of the list.
|
|
* Return data just in case anyone wants it.
|
|
* (This function can't be INLINEd because it contains a loop)
|
|
**********************************************************************/
|
|
|
|
ELIST_LINK *ELIST_ITERATOR::move_to_last() {
|
|
#ifndef NDEBUG
|
|
if (!list)
|
|
NO_LIST.error("ELIST_ITERATOR::move_to_last", ABORT);
|
|
#endif
|
|
|
|
while (current != list->last) {
|
|
forward();
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST_ITERATOR::exchange()
|
|
*
|
|
* Given another iterator, whose current element is a different element on
|
|
* the same list list OR an element of another list, exchange the two current
|
|
* elements. On return, each iterator points to the element which was the
|
|
* other iterators current on entry.
|
|
* (This function hasn't been in-lined because its a bit big!)
|
|
**********************************************************************/
|
|
|
|
void ELIST_ITERATOR::exchange( // positions of 2 links
|
|
ELIST_ITERATOR *other_it) { // other iterator
|
|
constexpr ERRCODE DONT_EXCHANGE_DELETED("Can't exchange deleted elements of lists");
|
|
|
|
ELIST_LINK *old_current;
|
|
|
|
#ifndef NDEBUG
|
|
if (!list)
|
|
NO_LIST.error("ELIST_ITERATOR::exchange", ABORT);
|
|
if (!other_it)
|
|
BAD_PARAMETER.error("ELIST_ITERATOR::exchange", ABORT, "other_it nullptr");
|
|
if (!(other_it->list))
|
|
NO_LIST.error("ELIST_ITERATOR::exchange", ABORT, "other_it");
|
|
#endif
|
|
|
|
/* Do nothing if either list is empty or if both iterators reference the same
|
|
link */
|
|
|
|
if ((list->empty()) || (other_it->list->empty()) || (current == other_it->current)) {
|
|
return;
|
|
}
|
|
|
|
/* Error if either current element is deleted */
|
|
|
|
if (!current || !other_it->current) {
|
|
DONT_EXCHANGE_DELETED.error("ELIST_ITERATOR.exchange", ABORT);
|
|
}
|
|
|
|
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
|
|
(other before this); non-doubleton adjacent elements (this before other);
|
|
non-adjacent elements. */
|
|
|
|
// adjacent links
|
|
if ((next == other_it->current) || (other_it->next == current)) {
|
|
// doubleton list
|
|
if ((next == other_it->current) && (other_it->next == current)) {
|
|
prev = next = current;
|
|
other_it->prev = other_it->next = other_it->current;
|
|
} else { // non-doubleton with
|
|
// adjacent links
|
|
// other before this
|
|
if (other_it->next == current) {
|
|
other_it->prev->next = current;
|
|
other_it->current->next = next;
|
|
current->next = other_it->current;
|
|
other_it->next = other_it->current;
|
|
prev = current;
|
|
} else { // this before other
|
|
prev->next = other_it->current;
|
|
current->next = other_it->next;
|
|
other_it->current->next = current;
|
|
next = current;
|
|
other_it->prev = other_it->current;
|
|
}
|
|
}
|
|
} else { // no overlap
|
|
prev->next = other_it->current;
|
|
current->next = other_it->next;
|
|
other_it->prev->next = current;
|
|
other_it->current->next = next;
|
|
}
|
|
|
|
/* update end of list pointer when necessary (remember that the 2 iterators
|
|
may iterate over different lists!) */
|
|
|
|
if (list->last == current) {
|
|
list->last = other_it->current;
|
|
}
|
|
if (other_it->list->last == other_it->current) {
|
|
other_it->list->last = current;
|
|
}
|
|
|
|
if (current == cycle_pt) {
|
|
cycle_pt = other_it->cycle_pt;
|
|
}
|
|
if (other_it->current == other_it->cycle_pt) {
|
|
other_it->cycle_pt = cycle_pt;
|
|
}
|
|
|
|
/* The actual exchange - in all cases*/
|
|
|
|
old_current = current;
|
|
current = other_it->current;
|
|
other_it->current = old_current;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* ELIST_ITERATOR::extract_sublist()
|
|
*
|
|
* This is a private member, used only by ELIST::assign_to_sublist.
|
|
* Given another iterator for the same list, extract the links from THIS to
|
|
* OTHER inclusive, link them into a new circular list, and return a
|
|
* pointer to the last element.
|
|
* (Can't inline this function because it contains a loop)
|
|
**********************************************************************/
|
|
|
|
ELIST_LINK *ELIST_ITERATOR::extract_sublist( // from this current
|
|
ELIST_ITERATOR *other_it) { // to other current
|
|
#ifndef NDEBUG
|
|
constexpr ERRCODE BAD_EXTRACTION_PTS("Can't extract sublist from points on different lists");
|
|
constexpr ERRCODE DONT_EXTRACT_DELETED("Can't extract a sublist marked by deleted points");
|
|
#endif
|
|
constexpr ERRCODE BAD_SUBLIST("Can't find sublist end point in original list");
|
|
|
|
ELIST_ITERATOR temp_it = *this;
|
|
ELIST_LINK *end_of_new_list;
|
|
|
|
#ifndef NDEBUG
|
|
if (!other_it)
|
|
BAD_PARAMETER.error("ELIST_ITERATOR::extract_sublist", ABORT, "other_it nullptr");
|
|
if (!list)
|
|
NO_LIST.error("ELIST_ITERATOR::extract_sublist", ABORT);
|
|
if (list != other_it->list)
|
|
BAD_EXTRACTION_PTS.error("ELIST_ITERATOR.extract_sublist", ABORT);
|
|
if (list->empty())
|
|
EMPTY_LIST.error("ELIST_ITERATOR::extract_sublist", ABORT);
|
|
|
|
if (!current || !other_it->current)
|
|
DONT_EXTRACT_DELETED.error("ELIST_ITERATOR.extract_sublist", ABORT);
|
|
#endif
|
|
|
|
ex_current_was_last = other_it->ex_current_was_last = false;
|
|
ex_current_was_cycle_pt = false;
|
|
other_it->ex_current_was_cycle_pt = false;
|
|
|
|
temp_it.mark_cycle_pt();
|
|
do { // walk sublist
|
|
if (temp_it.cycled_list()) { // can't find end pt
|
|
BAD_SUBLIST.error("ELIST_ITERATOR.extract_sublist", ABORT);
|
|
}
|
|
|
|
if (temp_it.at_last()) {
|
|
list->last = prev;
|
|
ex_current_was_last = other_it->ex_current_was_last = true;
|
|
}
|
|
|
|
if (temp_it.current == cycle_pt) {
|
|
ex_current_was_cycle_pt = true;
|
|
}
|
|
|
|
if (temp_it.current == other_it->cycle_pt) {
|
|
other_it->ex_current_was_cycle_pt = true;
|
|
}
|
|
|
|
temp_it.forward();
|
|
} while (temp_it.prev != other_it->current);
|
|
|
|
// circularise sublist
|
|
other_it->current->next = current;
|
|
end_of_new_list = other_it->current;
|
|
|
|
// sublist = whole list
|
|
if (prev == other_it->current) {
|
|
list->last = nullptr;
|
|
prev = current = next = nullptr;
|
|
other_it->prev = other_it->current = other_it->next = nullptr;
|
|
} else {
|
|
prev->next = other_it->next;
|
|
current = other_it->current = nullptr;
|
|
next = other_it->next;
|
|
other_it->prev = prev;
|
|
}
|
|
return end_of_new_list;
|
|
}
|
|
|
|
} // namespace tesseract
|