mongoose/test/freertos-tcp/portable/NetworkInterface/Common/phyHandling.c
2021-05-13 22:05:00 +01:00

768 lines
27 KiB
C

/*
* Handling of Ethernet PHY's
* PHY's communicate with an EMAC either through
* a Media-Independent Interface (MII), or a Reduced Media-Independent Interface (RMII).
* The EMAC can poll for PHY ports on 32 different addresses. Each of the PHY ports
* shall be treated independently.
*
*/
/* Standard includes. */
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* FreeRTOS+TCP includes. */
#include "FreeRTOS_IP.h"
#include "FreeRTOS_Sockets.h"
#include "phyHandling.h"
#define phyMIN_PHY_ADDRESS 0
#define phyMAX_PHY_ADDRESS 31
#if defined( PHY_LS_HIGH_CHECK_TIME_MS ) || defined( PHY_LS_LOW_CHECK_TIME_MS )
#warning please use the new defines with 'ipconfig' prefix
#endif
#ifndef ipconfigPHY_LS_HIGH_CHECK_TIME_MS
/* Check if the LinkStatus in the PHY is still high after 15 seconds of not
* receiving packets. */
#define ipconfigPHY_LS_HIGH_CHECK_TIME_MS 15000UL
#endif
#ifndef ipconfigPHY_LS_LOW_CHECK_TIME_MS
/* Check if the LinkStatus in the PHY is still low every second. */
#define ipconfigPHY_LS_LOW_CHECK_TIME_MS 1000UL
#endif
/* As the following 3 macro's are OK in most situations, and so they're not
* included in 'FreeRTOSIPConfigDefaults.h'.
* Users can change their values in the project's 'FreeRTOSIPConfig.h'. */
#ifndef phyPHY_MAX_RESET_TIME_MS
#define phyPHY_MAX_RESET_TIME_MS 1000UL
#endif
#ifndef phyPHY_MAX_NEGOTIATE_TIME_MS
#define phyPHY_MAX_NEGOTIATE_TIME_MS 3000UL
#endif
#ifndef phySHORT_DELAY_MS
#define phySHORT_DELAY_MS 50UL
#endif
/* Naming and numbering of basic PHY registers. */
#define phyREG_00_BMCR 0x00U /* Basic Mode Control Register. */
#define phyREG_01_BMSR 0x01U /* Basic Mode Status Register. */
#define phyREG_02_PHYSID1 0x02U /* PHYS ID 1 */
#define phyREG_03_PHYSID2 0x03U /* PHYS ID 2 */
#define phyREG_04_ADVERTISE 0x04U /* Advertisement control reg */
/* Naming and numbering of extended PHY registers. */
#define PHYREG_10_PHYSTS 0x10U /* 16 PHY status register Offset */
#define phyREG_19_PHYCR 0x19U /* 25 RW PHY Control Register */
#define phyREG_1F_PHYSPCS 0x1FU /* 31 RW PHY Special Control Status */
/* Bit fields for 'phyREG_00_BMCR', the 'Basic Mode Control Register'. */
#define phyBMCR_FULL_DUPLEX 0x0100U /* Full duplex. */
#define phyBMCR_AN_RESTART 0x0200U /* Auto negotiation restart. */
#define phyBMCR_ISOLATE 0x0400U /* 1 = Isolates 0 = Normal operation. */
#define phyBMCR_AN_ENABLE 0x1000U /* Enable auto negotiation. */
#define phyBMCR_SPEED_100 0x2000U /* Select 100Mbps. */
#define phyBMCR_RESET 0x8000U /* Reset the PHY. */
/* Bit fields for 'phyREG_19_PHYCR', the 'PHY Control Register'. */
#define PHYCR_MDIX_EN 0x8000U /* Enable Auto MDIX. */
#define PHYCR_MDIX_FORCE 0x4000U /* Force MDIX crossed. */
#define phyBMSR_AN_COMPLETE 0x0020U /* Auto-Negotiation process completed */
#define phyBMSR_LINK_STATUS 0x0004U
#define phyPHYSTS_LINK_STATUS 0x0001U /* PHY Link mask */
#define phyPHYSTS_SPEED_STATUS 0x0002U /* PHY Speed mask */
#define phyPHYSTS_DUPLEX_STATUS 0x0004U /* PHY Duplex mask */
/* Bit fields for 'phyREG_1F_PHYSPCS
* 001 = 10BASE-T half-duplex
* 101 = 10BASE-T full-duplex
* 010 = 100BASE-TX half-duplex
* 110 = 100BASE-TX full-duplex
*/
#define phyPHYSPCS_SPEED_MASK 0x000CU
#define phyPHYSPCS_SPEED_10 0x0004U
#define phyPHYSPCS_FULL_DUPLEX 0x0010U
/*
* Description of all capabilities that can be advertised to
* the peer (usually a switch or router).
*/
#define phyADVERTISE_CSMA 0x0001U /* Supports IEEE 802.3u: Fast Ethernet at 100 Mbit/s */
#define phyADVERTISE_10HALF 0x0020U /* Try for 10mbps half-duplex. */
#define phyADVERTISE_10FULL 0x0040U /* Try for 10mbps full-duplex. */
#define phyADVERTISE_100HALF 0x0080U /* Try for 100mbps half-duplex. */
#define phyADVERTISE_100FULL 0x0100U /* Try for 100mbps full-duplex. */
#define phyADVERTISE_ALL \
( phyADVERTISE_10HALF | phyADVERTISE_10FULL | \
phyADVERTISE_100HALF | phyADVERTISE_100FULL | \
phyADVERTISE_CSMA )
/* Send a reset command to a set of PHY-ports. */
static uint32_t xPhyReset( EthernetPhy_t * pxPhyObject,
uint32_t ulPhyMask );
static BaseType_t xHas_1F_PHYSPCS( uint32_t ulPhyID )
{
BaseType_t xResult;
switch( ulPhyID )
{
case PHY_ID_LAN8720:
case PHY_ID_LAN8742A:
case PHY_ID_KSZ8041:
/*
* case PHY_ID_KSZ8051: // same ID as 8041
* case PHY_ID_KSZ8081: // same ID as 8041
*/
case PHY_ID_KSZ8081MNXIA:
case PHY_ID_KSZ8863:
default:
/* Most PHY's have a 1F_PHYSPCS */
xResult = pdTRUE;
break;
case PHY_ID_DP83848I:
xResult = pdFALSE;
break;
}
return xResult;
}
/*-----------------------------------------------------------*/
static BaseType_t xHas_19_PHYCR( uint32_t ulPhyID )
{
BaseType_t xResult;
switch( ulPhyID )
{
case PHY_ID_LAN8742A:
case PHY_ID_DP83848I:
xResult = pdTRUE;
break;
default:
/* Most PHY's do not have a 19_PHYCR */
xResult = pdFALSE;
break;
}
return xResult;
}
/*-----------------------------------------------------------*/
/* Initialise the struct and assign a PHY-read and -write function. */
void vPhyInitialise( EthernetPhy_t * pxPhyObject,
xApplicationPhyReadHook_t fnPhyRead,
xApplicationPhyWriteHook_t fnPhyWrite )
{
memset( ( void * ) pxPhyObject, 0, sizeof( *pxPhyObject ) );
pxPhyObject->fnPhyRead = fnPhyRead;
pxPhyObject->fnPhyWrite = fnPhyWrite;
}
/*-----------------------------------------------------------*/
/* Discover all PHY's connected by polling 32 indexes ( zero-based ) */
BaseType_t xPhyDiscover( EthernetPhy_t * pxPhyObject )
{
BaseType_t xPhyAddress;
pxPhyObject->xPortCount = 0;
for( xPhyAddress = phyMIN_PHY_ADDRESS; xPhyAddress <= phyMAX_PHY_ADDRESS; xPhyAddress++ )
{
uint32_t ulLowerID;
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_03_PHYSID2, &ulLowerID );
/* A valid PHY id can not be all zeros or all ones. */
if( ( ulLowerID != ( uint16_t ) ~0U ) && ( ulLowerID != ( uint16_t ) 0U ) )
{
uint32_t ulUpperID;
uint32_t ulPhyID;
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_02_PHYSID1, &ulUpperID );
ulPhyID = ( ( ( uint32_t ) ulUpperID ) << 16 ) | ( ulLowerID & 0xFFF0 );
pxPhyObject->ucPhyIndexes[ pxPhyObject->xPortCount ] = xPhyAddress;
pxPhyObject->ulPhyIDs[ pxPhyObject->xPortCount ] = ulPhyID;
pxPhyObject->xPortCount++;
/* See if there is more storage space. */
if( pxPhyObject->xPortCount == ipconfigPHY_MAX_PORTS )
{
break;
}
}
}
if( pxPhyObject->xPortCount > 0 )
{
FreeRTOS_printf( ( "PHY ID %lX\n", pxPhyObject->ulPhyIDs[ 0 ] ) );
}
return pxPhyObject->xPortCount;
}
/*-----------------------------------------------------------*/
/* Send a reset command to a set of PHY-ports. */
static uint32_t xPhyReset( EthernetPhy_t * pxPhyObject,
uint32_t ulPhyMask )
{
uint32_t ulDoneMask, ulConfig;
TickType_t xRemainingTime;
TimeOut_t xTimer;
BaseType_t xPhyIndex;
/* A bit-mask of PHY ports that are ready. */
ulDoneMask = 0UL;
/* Set the RESET bits high. */
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
/* Read Control register. */
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig );
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig | phyBMCR_RESET );
}
xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( phyPHY_MAX_RESET_TIME_MS );
vTaskSetTimeOutState( &xTimer );
/* The reset should last less than a second. */
for( ; ; )
{
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig );
if( ( ulConfig & phyBMCR_RESET ) == 0 )
{
FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET %d ready\n", ( int ) xPhyIndex ) );
ulDoneMask |= ( 1UL << xPhyIndex );
}
}
if( ulDoneMask == ulPhyMask )
{
break;
}
if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE )
{
FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) );
break;
}
/* Block for a while */
vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) );
}
/* Clear the reset bits. */
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ )
{
if( ( ulDoneMask & ( 1UL << xPhyIndex ) ) == 0UL )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
/* The reset operation timed out, clear the bit manually. */
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig );
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig & ~phyBMCR_RESET );
}
}
vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) );
return ulDoneMask;
}
/*-----------------------------------------------------------*/
BaseType_t xPhyConfigure( EthernetPhy_t * pxPhyObject,
const PhyProperties_t * pxPhyProperties )
{
uint32_t ulConfig, ulAdvertise;
BaseType_t xPhyIndex;
if( pxPhyObject->xPortCount < 1 )
{
FreeRTOS_printf( ( "xPhyConfigure: No PHY's detected.\n" ) );
return -1;
}
/* The expected ID for the 'LAN8742A' is 0x0007c130. */
/* The expected ID for the 'LAN8720' is 0x0007c0f0. */
/* The expected ID for the 'DP83848I' is 0x20005C90. */
/* Set advertise register. */
if( ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO ) && ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO ) )
{
ulAdvertise = phyADVERTISE_ALL;
/* Reset auto-negotiation capability. */
}
else
{
/* Always select protocol 802.3u. */
ulAdvertise = phyADVERTISE_CSMA;
if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO )
{
if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL )
{
ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_100FULL;
}
else
{
ulAdvertise |= phyADVERTISE_10HALF | phyADVERTISE_100HALF;
}
}
else if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO )
{
if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_10 )
{
ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_10HALF;
}
else
{
ulAdvertise |= phyADVERTISE_100FULL | phyADVERTISE_100HALF;
}
}
else if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_100 )
{
if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL )
{
ulAdvertise |= phyADVERTISE_100FULL;
}
else
{
ulAdvertise |= phyADVERTISE_100HALF;
}
}
else
{
if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL )
{
ulAdvertise |= phyADVERTISE_10FULL;
}
else
{
ulAdvertise |= phyADVERTISE_10HALF;
}
}
}
/* Send a reset command to a set of PHY-ports. */
xPhyReset( pxPhyObject, xPhyGetMask( pxPhyObject ) );
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ];
/* Write advertise register. */
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, ulAdvertise );
/*
* AN_EN AN1 AN0 Forced Mode
* 0 0 0 10BASE-T, Half-Duplex
* 0 0 1 10BASE-T, Full-Duplex
* 0 1 0 100BASE-TX, Half-Duplex
* 0 1 1 100BASE-TX, Full-Duplex
* AN_EN AN1 AN0 Advertised Mode
* 1 0 0 10BASE-T, Half/Full-Duplex
* 1 0 1 100BASE-TX, Half/Full-Duplex
* 1 1 0 10BASE-T Half-Duplex
* 100BASE-TX, Half-Duplex
* 1 1 1 10BASE-T, Half/Full-Duplex
* 100BASE-TX, Half/Full-Duplex
*/
/* Read Control register. */
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig );
ulConfig &= ~( phyBMCR_SPEED_100 | phyBMCR_FULL_DUPLEX );
ulConfig |= phyBMCR_AN_ENABLE;
if( ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_100 ) || ( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_AUTO ) )
{
ulConfig |= phyBMCR_SPEED_100;
}
else if( pxPhyProperties->ucSpeed == ( uint8_t ) PHY_SPEED_10 )
{
ulConfig &= ~phyBMCR_SPEED_100;
}
if( ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_FULL ) || ( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_AUTO ) )
{
ulConfig |= phyBMCR_FULL_DUPLEX;
}
else if( pxPhyProperties->ucDuplex == ( uint8_t ) PHY_DUPLEX_HALF )
{
ulConfig &= ~phyBMCR_FULL_DUPLEX;
}
if( xHas_19_PHYCR( ulPhyID ) )
{
uint32_t ulPhyControl;
/* Read PHY Control register. */
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_19_PHYCR, &ulPhyControl );
/* Clear bits which might get set: */
ulPhyControl &= ~( PHYCR_MDIX_EN | PHYCR_MDIX_FORCE );
if( pxPhyProperties->ucMDI_X == PHY_MDIX_AUTO )
{
ulPhyControl |= PHYCR_MDIX_EN;
}
else if( pxPhyProperties->ucMDI_X == PHY_MDIX_CROSSED )
{
/* Force direct link = Use crossed RJ45 cable. */
ulPhyControl &= ~PHYCR_MDIX_FORCE;
}
else
{
/* Force crossed link = Use direct RJ45 cable. */
ulPhyControl |= PHYCR_MDIX_FORCE;
}
/* update PHY Control Register. */
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_19_PHYCR, ulPhyControl );
}
FreeRTOS_printf( ( "+TCP: advertise: %04lX config %04lX\n", ulAdvertise, ulConfig ) );
}
/* Keep these values for later use. */
pxPhyObject->ulBCRValue = ulConfig & ~phyBMCR_ISOLATE;
pxPhyObject->ulACRValue = ulAdvertise;
return 0;
}
/*-----------------------------------------------------------*/
/* xPhyFixedValue(): this function is called in case auto-negotiation is disabled.
* The caller has set the values in 'xPhyPreferences' (ucDuplex and ucSpeed).
* The PHY register phyREG_00_BMCR will be set for every connected PHY that matches
* with ulPhyMask. */
BaseType_t xPhyFixedValue( EthernetPhy_t * pxPhyObject,
uint32_t ulPhyMask )
{
BaseType_t xPhyIndex;
uint32_t ulValue, ulBitMask = ( uint32_t ) 1U;
ulValue = ( uint32_t ) 0U;
if( pxPhyObject->xPhyPreferences.ucDuplex == PHY_DUPLEX_FULL )
{
ulValue |= phyBMCR_FULL_DUPLEX;
}
if( pxPhyObject->xPhyPreferences.ucSpeed == PHY_SPEED_100 )
{
ulValue |= phyBMCR_SPEED_100;
}
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 )
{
if( ( ulPhyMask & ulBitMask ) != 0lu )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
/* Enable Auto-Negotiation. */
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulValue );
}
}
return 0;
}
/*-----------------------------------------------------------*/
/* xPhyStartAutoNegotiation() is the alternative xPhyFixedValue():
* It sets the BMCR_AN_RESTART bit and waits for the auto-negotiation completion
* ( phyBMSR_AN_COMPLETE ). */
BaseType_t xPhyStartAutoNegotiation( EthernetPhy_t * pxPhyObject,
uint32_t ulPhyMask )
{
uint32_t xPhyIndex, ulDoneMask, ulBitMask;
uint32_t ulPHYLinkStatus, ulRegValue;
TickType_t xRemainingTime;
TimeOut_t xTimer;
if( ulPhyMask == ( uint32_t ) 0U )
{
return 0;
}
for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++ )
{
if( ( ulPhyMask & ( 1lu << xPhyIndex ) ) != 0lu )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
/* Enable Auto-Negotiation. */
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, pxPhyObject->ulACRValue );
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue | phyBMCR_AN_RESTART );
}
}
xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( phyPHY_MAX_NEGOTIATE_TIME_MS );
vTaskSetTimeOutState( &xTimer );
ulDoneMask = 0;
/* Wait until the auto-negotiation will be completed */
for( ; ; )
{
ulBitMask = ( uint32_t ) 1U;
for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 )
{
if( ( ulPhyMask & ulBitMask ) != 0lu )
{
if( ( ulDoneMask & ulBitMask ) == 0lu )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue );
if( ( ulRegValue & phyBMSR_AN_COMPLETE ) != 0 )
{
ulDoneMask |= ulBitMask;
}
}
}
}
if( ulPhyMask == ulDoneMask )
{
break;
}
if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE )
{
FreeRTOS_printf( ( "xPhyStartAutoNegotiation: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) );
break;
}
vTaskDelay( pdMS_TO_TICKS( phySHORT_DELAY_MS ) );
}
if( ulDoneMask != ( uint32_t ) 0U )
{
ulBitMask = ( uint32_t ) 1U;
pxPhyObject->ulLinkStatusMask &= ~( ulDoneMask );
for( xPhyIndex = 0; xPhyIndex < ( uint32_t ) pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ];
if( ( ulDoneMask & ulBitMask ) == ( uint32_t ) 0U )
{
continue;
}
/* Clear the 'phyBMCR_AN_RESTART' bit. */
pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue );
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue );
if( ( ulRegValue & phyBMSR_LINK_STATUS ) != 0 )
{
ulPHYLinkStatus |= phyBMSR_LINK_STATUS;
pxPhyObject->ulLinkStatusMask |= ulBitMask;
}
else
{
ulPHYLinkStatus &= ~( phyBMSR_LINK_STATUS );
}
if( ulPhyID == PHY_ID_KSZ8081MNXIA )
{
uint32_t ulControlStatus;
pxPhyObject->fnPhyRead( xPhyAddress, 0x1E, &ulControlStatus );
switch( ulControlStatus & 0x07 )
{
case 0x01:
case 0x05:
/* [001] = 10BASE-T half-duplex */
/* [101] = 10BASE-T full-duplex */
/* 10 Mbps. */
ulRegValue |= phyPHYSTS_SPEED_STATUS;
break;
case 0x02:
case 0x06:
/* [010] = 100BASE-TX half-duplex */
/* [110] = 100BASE-TX full-duplex */
break;
}
switch( ulControlStatus & 0x07 )
{
case 0x05:
case 0x06:
/* [101] = 10BASE-T full-duplex */
/* [110] = 100BASE-TX full-duplex */
/* Full duplex. */
ulRegValue |= phyPHYSTS_DUPLEX_STATUS;
break;
case 0x01:
case 0x02:
/* [001] = 10BASE-T half-duplex */
/* [010] = 100BASE-TX half-duplex */
break;
}
}
else if( xHas_1F_PHYSPCS( ulPhyID ) )
{
/* 31 RW PHY Special Control Status */
uint32_t ulControlStatus;
pxPhyObject->fnPhyRead( xPhyAddress, phyREG_1F_PHYSPCS, &ulControlStatus );
ulRegValue = 0;
if( ( ulControlStatus & phyPHYSPCS_FULL_DUPLEX ) != 0 )
{
ulRegValue |= phyPHYSTS_DUPLEX_STATUS;
}
if( ( ulControlStatus & phyPHYSPCS_SPEED_MASK ) == phyPHYSPCS_SPEED_10 )
{
ulRegValue |= phyPHYSTS_SPEED_STATUS;
}
}
else
{
/* Read the result of the auto-negotiation. */
pxPhyObject->fnPhyRead( xPhyAddress, PHYREG_10_PHYSTS, &ulRegValue );
}
FreeRTOS_printf( ( "Autonego ready: %08lx: %s duplex %u mbit %s status\n",
ulRegValue,
( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) ? "full" : "half",
( ulRegValue & phyPHYSTS_SPEED_STATUS ) ? 10 : 100,
( ( ulPHYLinkStatus |= phyBMSR_LINK_STATUS ) != 0 ) ? "high" : "low" ) );
if( ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) != ( uint32_t ) 0U )
{
pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_FULL;
}
else
{
pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_HALF;
}
if( ( ulRegValue & phyPHYSTS_SPEED_STATUS ) != 0 )
{
pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_10;
}
else
{
pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_100;
}
}
} /* if( ulDoneMask != ( uint32_t) 0U ) */
return 0;
}
/*-----------------------------------------------------------*/
BaseType_t xPhyCheckLinkStatus( EthernetPhy_t * pxPhyObject,
BaseType_t xHadReception )
{
uint32_t ulStatus, ulBitMask = 1U;
BaseType_t xPhyIndex;
BaseType_t xNeedCheck = pdFALSE;
if( xHadReception > 0 )
{
/* A packet was received. No need to check for the PHY status now,
* but set a timer to check it later on. */
vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) );
pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS );
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 )
{
if( ( pxPhyObject->ulLinkStatusMask & ulBitMask ) == 0UL )
{
pxPhyObject->ulLinkStatusMask |= ulBitMask;
FreeRTOS_printf( ( "xPhyCheckLinkStatus: PHY LS now %02lX\n", pxPhyObject->ulLinkStatusMask ) );
xNeedCheck = pdTRUE;
}
}
}
else if( xTaskCheckForTimeOut( &( pxPhyObject->xLinkStatusTimer ), &( pxPhyObject->xLinkStatusRemaining ) ) != pdFALSE )
{
/* Frequent checking the PHY Link Status can affect for the performance of Ethernet controller.
* As long as packets are received, no polling is needed.
* Otherwise, polling will be done when the 'xLinkStatusTimer' expires. */
for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 )
{
BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ];
if( pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulStatus ) == 0 )
{
if( !!( pxPhyObject->ulLinkStatusMask & ulBitMask ) != !!( ulStatus & phyBMSR_LINK_STATUS ) )
{
if( ( ulStatus & phyBMSR_LINK_STATUS ) != 0 )
{
pxPhyObject->ulLinkStatusMask |= ulBitMask;
}
else
{
pxPhyObject->ulLinkStatusMask &= ~( ulBitMask );
}
FreeRTOS_printf( ( "xPhyCheckLinkStatus: PHY LS now %02lX\n", pxPhyObject->ulLinkStatusMask ) );
xNeedCheck = pdTRUE;
}
}
}
vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) );
if( ( pxPhyObject->ulLinkStatusMask & ( ulBitMask >> 1 ) ) != 0 )
{
/* The link status is high, so don't poll the PHY too often. */
pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS );
}
else
{
/* The link status is low, polling may be done more frequently. */
pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_LOW_CHECK_TIME_MS );
}
}
return xNeedCheck;
}
/*-----------------------------------------------------------*/