mongoose/examples/renesas/ek-ra6m4-make-baremetal-builtin/hal.c
2024-01-27 17:06:28 +00:00

158 lines
3.7 KiB
C

// Copyright (c) 2024 Cesanta Software Limited
// All rights reserved
#include <stdint.h>
#include <string.h>
#include <sys/stat.h> // For _fstat()
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
static volatile uint64_t s_ticks; // Milliseconds since boot
extern void _estack(void); // Defined in link.ld
void Reset_Handler(void);
void SysTick_Handler(void);
// 16 ARM and 200 peripheral handlers
__attribute__((section(".vectors"))) void (*const tab[16 + 10])(void) = {
_estack, Reset_Handler, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, SysTick_Handler};
void Reset_Handler(void) {
extern long _sbss[], _ebss[], _sdata[], _edata[], _sidata[];
extern int main(void);
SCB->VTOR = (uint32_t) tab;
for (long *dst = _sbss; dst < _ebss; dst++) *dst = 0;
for (long *dst = _sdata, *src = _sidata; dst < _edata;) *dst++ = *src++;
SystemInit();
main();
while (1) (void) 0;
}
void SystemInit(void) { // Called automatically by startup code
clock_init(); // Set system clock to SYS_FREQUENCY
rng_init(); // Initialise random number generator
SysTick_Config(SystemCoreClock / 1000); // Sys tick every 1ms
}
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
uint64_t mg_millis(void) { // Let Mongoose use our uptime function
return s_ticks; // Return number of milliseconds since boot
}
void hal_init(void) {
uart_init(UART_DEBUG, 115200); // Initialise UART
gpio_output(LED1); // Initialise LED
gpio_output(LED2); // Initialise LED
gpio_output(LED3); // Initialise LED
ethernet_init(); // Initialise Ethernet pins
}
// Newlib syscalls. Implemented are: _sbrk() for malloc, and _write()
int _fstat(int fd, struct stat *st) {
(void) fd, (void) st;
return -1;
}
extern unsigned char _end[]; // End of data section, start of heap. See link.ld
static unsigned char *s_current_heap_end = _end;
size_t hal_ram_used(void) {
return (size_t) (s_current_heap_end - _end);
}
size_t hal_ram_free(void) {
unsigned char endofstack;
return (size_t) (&endofstack - s_current_heap_end);
}
void *_sbrk(int incr) {
unsigned char *prev_heap;
unsigned char *heap_end = (unsigned char *) ((size_t) &heap_end - 256);
prev_heap = s_current_heap_end;
// Check how much space we got from the heap end to the stack end
if (s_current_heap_end + incr > heap_end) return (void *) -1;
s_current_heap_end += incr;
return prev_heap;
}
int _open(const char *path) {
(void) path;
return -1;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}
void _exit(int status) {
(void) status;
for (;;) asm volatile("BKPT #0");
}
void _kill(int pid, int sig) {
(void) pid, (void) sig;
}
int _getpid(void) {
return -1;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len);
return -1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;
}
int _unlink(const char *a) {
(void) a;
return -1;
}
int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;
}
int mkdir(const char *path, mode_t mode) {
(void) path, (void) mode;
return -1;
}
void _init(void) {
}