Listening UNIX sockets were not removed on graceful shutdown, preventing
the next runs. The fix is to replace the custom socket closing code in
ngx_master_process_cycle() by the ngx_close_listening_sockets() call.
When changing binary, sending a SIGTERM to the new binary's master process
should not remove inherited UNIX sockets unless the old binary's master
process has exited.
Previously, invalid connection preface errors were only logged at debug
level, providing no visible feedback, in particular, when a plain text
HTTP/2 listening socket is erroneously used for HTTP/1.x connections.
Now these are explicitly logged at the info level, much like other
client-related errors.
When enabled, certificate status is stored in cache and is used to validate
the certificate in future requests.
New directive ssl_ocsp_cache is added to configure the cache.
OCSP validation for client certificates is enabled by the "ssl_ocsp" directive.
OCSP responder can be optionally specified by "ssl_ocsp_responder".
When session is reused, peer chain is not available for validation.
If the verified chain contains certificates from the peer chain not available
at the server, validation will fail.
Previously only the first responder address was used per each stapling update.
Now, in case of a network or parsing error, next address is used.
This also fixes the issue with unsupported responder address families
(ticket #1330).
As per https://tools.ietf.org/html/rfc7540#section-8.1,
: A server can send a complete response prior to the client
: sending an entire request if the response does not depend on
: any portion of the request that has not been sent and
: received. When this is true, a server MAY request that the
: client abort transmission of a request without error by
: sending a RST_STREAM with an error code of NO_ERROR after
: sending a complete response (i.e., a frame with the
: END_STREAM flag). Clients MUST NOT discard responses as a
: result of receiving such a RST_STREAM, though clients can
: always discard responses at their discretion for other
: reasons.
Previously, RST_STREAM(NO_ERROR) received from upstream after
a frame with the END_STREAM flag was incorrectly treated as an
error. Now, a single RST_STREAM(NO_ERROR) is properly handled.
This fixes problems observed with modern grpc-c [1], as well
as with the Go gRPC module.
[1] https://github.com/grpc/grpc/pull/1661
The request processing is delayed by a timer. Since nginx updates
internal time once at the start of each event loop iteration, this
normally ensures constant time delay, adding a mitigation from
time-based attacks.
A notable exception to this is the case when there are no additional
events before the timer expires. To ensure constant-time processing
in this case as well, we trigger an additional event loop iteration
by posting a dummy event for the next event loop iteration.
When "aio" or "aio threads" is used while processing the response body of an
in-memory background subrequest, the subrequest could be finalized with an aio
operation still in progress. Upon aio completion either parent request is
woken or the old r->write_event_handler is called again. The latter may result
in request errors. In either case post_subrequest handler is never called with
the full response body, which is typically expected when using in-memory
subrequests.
Currently in nginx background subrequests are created by the upstream module
and the mirror module. The issue does not manifest itself with these
subrequests because they are header-only. But it can manifest itself with
third-party modules which create in-memory background subrequests.
We used to have default error_page overwrite for 495, 496, and 497, so
a configuration like
error_page 495 /error;
will result in error 400, much like without any error_page configured.
The 494 status code was introduced later (in 3848:de59ad6bf557, nginx 0.9.4),
and relevant changes to ngx_http_core_error_page() were missed, resulting
in inconsistent behaviour of "error_page 494" - with error_page configured
it results in 494 being returned instead of 400.
Reported by Frank Liu,
http://mailman.nginx.org/pipermail/nginx/2020-February/058957.html.
In "co64" atom chunk start offset is a 64-bit unsigned integer. When trimming
the "mdat" atom, chunk offsets are casted to off_t values which are typically
64-bit signed integers. A specially crafted mp4 file with huge chunk offsets
may lead to off_t overflow and result in negative trim boundaries.
The consequences of the overflow are:
- Incorrect Content-Length header value in the response.
- Negative left boundary of the response file buffer holding the trimmed "mdat".
This leads to pread()/sendfile() errors followed by closing the client
connection.
On rare systems where off_t is a 32-bit integer, this scenario is also feasible
with the "stco" atom.
The fix is to add checks which make sure data chunks referenced by each track
are within the mp4 file boundaries. Additionally a few more checks are added to
ensure mp4 file consistency and log errors.
Duplicate "Host" headers were allowed in nginx 0.7.0 (revision b9de93d804ea)
as a workaround for some broken Motorola phones which used to generate
requests with two "Host" headers[1]. It is believed that this workaround
is no longer relevant.
[1] http://mailman.nginx.org/pipermail/nginx-ru/2008-May/017845.html
The "identity" transfer coding has been removed in RFC 7230. It is
believed that it is not used in real life, and at the same time it
provides a potential attack vector.
We anyway do not support more than one transfer encoding, so accepting
requests with multiple Transfer-Encoding headers doesn't make sense.
Further, we do not handle multiple headers, and ignore anything but
the first header.
Reported by Filippo Valsorda.
A connection could get stuck without timers if a client has partially sent
the HEADERS frame such that it was split on the individual header boundary.
In this case, it cannot be processed without the rest of the HEADERS frame.
The fix is to call ngx_http_v2_state_headers_save() in this case. Normally,
it would be called from the ngx_http_v2_state_header_block() handler on the
next iteration, when there is not enough data to continue processing. This
isn't the case if recv_buffer became empty and there's no more data to read.
With the recent change to prevent frames flood in d4448892a294,
nginx will finalize the connection with NGX_HTTP_V2_INTERNAL_ERROR
whenever flood is detected, causing nginx aborting or stopping if
the debug_points directive is used in nginx config.
Previous change 1ce3f01a4355 incorrectly introduced processing of the
ngx_posted_next_events queue at the end of operation, effectively making
posted next events a nop, since at the end of an event loop iteration
the queue is always empty. Correct approach is to move events to the
ngx_posted_events queue at an iteration start, as it was done previously.
Further, in some cases the c->read event might be already in the
ngx_posted_events queue, and calling ngx_post_event() with the
ngx_posted_next_events queue won't do anything. To make sure the event
will be correctly placed into the ngx_posted_next_events queue
we now check if it is already posted.
Introduced in 9d2ad2fb4423 available bytes handling in SSL relied
on connection read handler being overwritten to set the ready flag
and the amount of available bytes. This approach is, however, does
not work properly when connection read handler is changed, for example,
when switching to a next pipelined request, and can result in unexpected
connection timeouts, see here:
http://mailman.nginx.org/pipermail/nginx-devel/2019-December/012825.html
Fix is to introduce ngx_event_process_posted_next() instead, which
will set ready and available regardless of how event handler is set.
When ngx_http_v2_close_stream_handler() is used to retry stream close
after queued frames are sent, client timeouts on the stream can be
logged multiple times and/or in addition to already happened errors.
To resolve this, separate ngx_http_v2_retry_close_stream_handler()
was introduced, which does not try to log timeouts.