Previous interface of ngx_open_dir() assumed that passed directory name
has a room for NGX_DIR_MASK at the end (NGX_DIR_MASK_LEN bytes). While all
direct users of ngx_dir_open() followed this interface, this also implied
similar requirements for indirect uses - in particular, via ngx_walk_tree().
Currently none of ngx_walk_tree() uses provides appropriate space, and
fixing this does not look like a right way to go. Instead, ngx_dir_open()
interface was changed to not require any additional space and use
appropriate allocations instead.
If SSL_write_early_data() returned SSL_ERROR_WANT_WRITE, stop further reading
using a newly introduced c->ssl->write_blocked flag, as otherwise this would
result in SSL error "ssl3_write_bytes:bad length". Eventually, normal reading
will be restored by read event posted from successful SSL_write_early_data().
While here, place "SSL_write_early_data: want write" debug on the path.
Previously, if an SRV record was successfully resolved, but all of its A
records failed to resolve, NXDOMAIN was returned to the caller, which is
considered a successful resolve rather than an error. This could result in
losing the result of a previous successful resolve by the caller.
Now NXDOMAIN is only returned if at least one A resolve completed with this
code. Otherwise the error state of the first A resolve is returned.
Previously, unnamed regex captures matched in the parent request, were not
available in a cloned subrequest. Now 3 fields related to unnamed captures
are copied to a cloned subrequest: r->ncaptures, r->captures and
r->captures_data. Since r->captures cannot be changed by either request after
creating a clone, a new flag r->realloc_captures is introduced to force
reallocation of r->captures.
The issue was reported as a proxy_cache_background_update misbehavior in
http://mailman.nginx.org/pipermail/nginx/2018-December/057251.html.
In the past, there were several security issues which resulted in
worker process memory disclosure due to buffers with negative size.
It looks reasonable to check for such buffers in various places,
much like we already check for zero size buffers.
While here, removed "#if 1 / #endif" around zero size buffer checks.
It looks highly unlikely that we'll disable these checks anytime soon.
On 32-bit platforms mp4->buffer_pos might overflow when a large
enough (close to 4 gigabytes) atom is being skipped, resulting in
incorrect memory addesses being read further in the code. In most
cases this results in harmless errors being logged, though may also
result in a segmentation fault if hitting unmapped pages.
To address this, ngx_mp4_atom_next() now only increments mp4->buffer_pos
up to mp4->buffer_end. This ensures that overflow cannot happen.
Variables now do not depend on presence of the HTTP status code in response.
If the corresponding event occurred, variables contain time between request
creation and the event, and "-" otherwise.
Previously, intermediate value of the $upstream_response_time variable held
unix timestamp.
The directive allows to drop binding between a client and existing UDP stream
session after receiving a specified number of packets. First packet from the
same client address and port will start a new session. Old session continues
to exist and will terminate at moment defined by configuration: either after
receiving the expected number of responses, or after timeout, as specified by
the "proxy_responses" and/or "proxy_timeout" directives.
By default, proxy_requests is zero (disabled).
An attack that continuously switches HTTP/2 connection between
idle and active states can result in excessive CPU usage.
This is because when a connection switches to the idle state,
all of its memory pool caches are freed.
This change limits the maximum allowed number of idle state
switches to 10 * http2_max_requests (i.e., 10000 by default).
This limits possible CPU usage in one connection, and also
imposes a limit on the maximum lifetime of a connection.
Initially reported by Gal Goldshtein from F5 Networks.
Fixed uncontrolled memory growth in case peer is flooding us with
some frames (e.g., SETTINGS and PING) and doesn't read data. Fix
is to limit the number of allocated control frames.
Previously there was no validation for the size of a 64-bit atom
in an mp4 file. This could lead to a CPU hog when the size is 0,
or various other problems due to integer underflow when calculating
atom data size, including segmentation fault or worker process
memory disclosure.
Size of a shared memory zones must be at least two pages - one page
for slab allocator internal data, and another page for actual allocations.
Using 8192 instead is wrong, as there are systems with page sizes other
than 4096.
Note well that two pages is usually too low as well. In particular, cache
is likely to use two allocations of different sizes for global structures,
and at least four pages will be needed to properly allocate cache nodes.
Except in a few very special cases, with keys zone of just two pages nginx
won't be able to start. Other uses of shared memory impose a limit
of 8 pages, which provides some room for global allocations. This patch
doesn't try to address this though.
Inspired by ticket #1665.
With maximum version explicitly set, TLSv1.3 will not be unexpectedly
enabled if nginx compiled with OpenSSL 1.1.0 (without TLSv1.3 support)
will be run with OpenSSL 1.1.1 (with TLSv1.3 support).
In e3ba4026c02d (1.15.4) nginx own renegotiation checks were disabled
if SSL_OP_NO_RENEGOTIATION is available. But since SSL_OP_NO_RENEGOTIATION
is only set on a connection, not in an SSL context, SSL_clear_option()
removed it as long as a matching virtual server was found. This resulted
in a segmentation fault similar to the one fixed in a6902a941279 (1.9.8),
affecting nginx built with OpenSSL 1.1.0h or higher.
To fix this, SSL_OP_NO_RENEGOTIATION is now explicitly set in
ngx_http_ssl_servername() after adjusting options. Additionally, instead
of c->ssl->renegotiation we now check c->ssl->handshaked, which seems
to be a more correct flag to test, and will prevent the segmentation fault
from happening even if SSL_OP_NO_RENEGOTIATION is not working.
The "no suitable signature algorithm" errors are reported by OpenSSL 1.1.1
when using TLSv1.3 if there are no shared signature algorithms. In
particular, this can happen if the client limits available signature
algorithms to something we don't have a certificate for, or to an empty
list. For example, the following command:
openssl s_client -connect 127.0.0.1:8443 -sigalgs rsa_pkcs1_sha1
will always result in the "no suitable signature algorithm" error
as the "rsa_pkcs1_sha1" algorithm refers solely to signatures which
appear in certificates and not defined for use in TLS 1.3 handshake
messages.
The SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS error is what BoringSSL returns
in the same situation.
The "no suitable key share" errors are reported by OpenSSL 1.1.1 when
using TLSv1.3 if there are no shared groups (that is, elliptic curves).
In particular, it is easy enough to trigger by using only a single
curve in ssl_ecdh_curve:
ssl_ecdh_curve secp384r1;
and using a different curve in the client:
openssl s_client -connect 127.0.0.1:443 -curves prime256v1
On the client side it is seen as "sslv3 alert handshake failure",
"SSL alert number 40":
0:error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert handshake failure:ssl/record/rec_layer_s3.c:1528:SSL alert number 40
It can be also triggered with default ssl_ecdh_curve by using a curve
which is not in the default list (X25519, prime256v1, X448, secp521r1,
secp384r1):
openssl s_client -connect 127.0.0.1:8443 -curves brainpoolP512r1
Given that many clients hardcode prime256v1, these errors might become
a common problem with TLSv1.3 if ssl_ecdh_curve is redefined. Previously
this resulted in not using ECDH with such clients, but with TLSv1.3 it
is no longer possible and will result in a handshake failure.
The SSL_R_NO_SHARED_GROUP error is what BoringSSL returns in the same
situation.
Seen at:
https://serverfault.com/questions/932102/nginx-ssl-handshake-error-no-suitable-key-share
Previously, configurations with typo, for example
fastcgi_cache_valid 200301 302 5m;
successfully pass configuration test. Adding check for status
codes > 599, and such configurations are now properly rejected.