mirror of
https://github.com/opencv/opencv.git
synced 2024-12-28 11:58:13 +08:00
202 lines
6.6 KiB
C++
202 lines
6.6 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include "opencv2/core/core.hpp"
|
||
|
#include "opencv2/videostab/outlier_rejection.hpp"
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace videostab
|
||
|
{
|
||
|
|
||
|
void NullOutlierRejector::process(
|
||
|
Size frameSize, InputArray points0, InputArray points1, OutputArray mask)
|
||
|
{
|
||
|
CV_Assert(points0.type() == points1.type());
|
||
|
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2));
|
||
|
|
||
|
int npoints = points0.getMat().checkVector(2);
|
||
|
mask.create(1, npoints, CV_8U);
|
||
|
Mat mask_ = mask.getMat();
|
||
|
mask_.setTo(1);
|
||
|
}
|
||
|
|
||
|
TranslationBasedLocalOutlierRejector::TranslationBasedLocalOutlierRejector()
|
||
|
{
|
||
|
setCellSize(Size(50, 50));
|
||
|
setRansacParams(RansacParams::default2dMotion(MM_TRANSLATION));
|
||
|
}
|
||
|
|
||
|
|
||
|
void TranslationBasedLocalOutlierRejector::process(
|
||
|
Size frameSize, InputArray points0, InputArray points1, OutputArray mask)
|
||
|
{
|
||
|
CV_Assert(points0.type() == points1.type());
|
||
|
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2));
|
||
|
|
||
|
int npoints = points0.getMat().checkVector(2);
|
||
|
|
||
|
const Point2f* points0_ = points0.getMat().ptr<Point2f>();
|
||
|
const Point2f* points1_ = points1.getMat().ptr<Point2f>();
|
||
|
|
||
|
mask.create(1, npoints, CV_8U);
|
||
|
uchar* mask_ = mask.getMat().ptr<uchar>();
|
||
|
|
||
|
Size ncells((frameSize.width + cellSize_.width - 1) / cellSize_.width,
|
||
|
(frameSize.height + cellSize_.height - 1) / cellSize_.height);
|
||
|
|
||
|
int cx, cy;
|
||
|
|
||
|
// fill grid cells
|
||
|
|
||
|
grid_.assign(ncells.area(), Cell());
|
||
|
|
||
|
for (int i = 0; i < npoints; ++i)
|
||
|
{
|
||
|
cx = std::min(cvRound(points0_[i].x / cellSize_.width), ncells.width - 1);
|
||
|
cy = std::min(cvRound(points0_[i].y / cellSize_.height), ncells.height - 1);
|
||
|
grid_[cy * ncells.width + cx].push_back(i);
|
||
|
}
|
||
|
|
||
|
// process each cell
|
||
|
|
||
|
RNG rng(0);
|
||
|
int niters = ransacParams_.niters();
|
||
|
int ninliers, ninliersMax;
|
||
|
vector<int> inliers;
|
||
|
float dx, dy, dxBest, dyBest;
|
||
|
float x1, y1;
|
||
|
int idx;
|
||
|
|
||
|
for (size_t ci = 0; ci < grid_.size(); ++ci)
|
||
|
{
|
||
|
// estimate translation model at the current cell using RANSAC
|
||
|
|
||
|
const Cell &cell = grid_[ci];
|
||
|
ninliersMax = 0;
|
||
|
dxBest = dyBest = 0.f;
|
||
|
|
||
|
// find the best hypothesis
|
||
|
|
||
|
if (!cell.empty())
|
||
|
{
|
||
|
for (int iter = 0; iter < niters; ++iter)
|
||
|
{
|
||
|
idx = cell[static_cast<unsigned>(rng) % cell.size()];
|
||
|
dx = points1_[idx].x - points0_[idx].x;
|
||
|
dy = points1_[idx].y - points0_[idx].y;
|
||
|
|
||
|
ninliers = 0;
|
||
|
for (size_t i = 0; i < cell.size(); ++i)
|
||
|
{
|
||
|
x1 = points0_[cell[i]].x + dx;
|
||
|
y1 = points0_[cell[i]].y + dy;
|
||
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||
|
sqr(ransacParams_.thresh))
|
||
|
{
|
||
|
ninliers++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ninliers > ninliersMax)
|
||
|
{
|
||
|
ninliersMax = ninliers;
|
||
|
dxBest = dx;
|
||
|
dyBest = dy;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// get the best hypothesis inliers
|
||
|
|
||
|
ninliers = 0;
|
||
|
inliers.resize(ninliersMax);
|
||
|
for (size_t i = 0; i < cell.size(); ++i)
|
||
|
{
|
||
|
x1 = points0_[cell[i]].x + dxBest;
|
||
|
y1 = points0_[cell[i]].y + dyBest;
|
||
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||
|
sqr(ransacParams_.thresh))
|
||
|
{
|
||
|
inliers[ninliers++] = cell[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// refine the best hypothesis
|
||
|
|
||
|
dxBest = dyBest = 0.f;
|
||
|
for (size_t i = 0; i < inliers.size(); ++i)
|
||
|
{
|
||
|
dxBest += points1_[inliers[i]].x - points0_[inliers[i]].x;
|
||
|
dyBest += points1_[inliers[i]].y - points0_[inliers[i]].y;
|
||
|
}
|
||
|
if (!inliers.empty())
|
||
|
{
|
||
|
dxBest /= inliers.size();
|
||
|
dyBest /= inliers.size();
|
||
|
}
|
||
|
|
||
|
// set mask elements for refined model inliers
|
||
|
|
||
|
for (size_t i = 0; i < cell.size(); ++i)
|
||
|
{
|
||
|
x1 = points0_[cell[i]].x + dxBest;
|
||
|
y1 = points0_[cell[i]].y + dyBest;
|
||
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) <
|
||
|
sqr(ransacParams_.thresh))
|
||
|
{
|
||
|
mask_[cell[i]] = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mask_[cell[i]] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace videostab
|
||
|
} // namespace cv
|