2018-02-06 20:54:14 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencl_kernels_core.hpp"
|
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp"
|
|
|
|
#include "stat.hpp"
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
#include "mean.simd.hpp"
|
|
|
|
#include "mean.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
|
|
|
|
2019-07-31 20:41:22 +08:00
|
|
|
#undef HAVE_IPP
|
|
|
|
#undef CV_IPP_RUN_FAST
|
|
|
|
#define CV_IPP_RUN_FAST(f, ...)
|
|
|
|
#undef CV_IPP_RUN
|
|
|
|
#define CV_IPP_RUN(c, f, ...)
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
namespace cv {
|
|
|
|
|
2018-02-06 20:54:14 +08:00
|
|
|
#if defined HAVE_IPP
|
|
|
|
static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret )
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_IPP();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
#if IPP_VERSION_X100 >= 700
|
|
|
|
size_t total_size = src.total();
|
|
|
|
int cn = src.channels();
|
|
|
|
if (cn > 4)
|
|
|
|
return false;
|
|
|
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
|
|
|
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
|
|
|
{
|
|
|
|
IppiSize sz = { cols, rows };
|
|
|
|
int type = src.type();
|
|
|
|
if( !mask.empty() )
|
|
|
|
{
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *);
|
|
|
|
ippiMaskMeanFuncC1 ippiMean_C1MR =
|
|
|
|
type == CV_8UC1 ? (ippiMaskMeanFuncC1)ippiMean_8u_C1MR :
|
|
|
|
type == CV_16UC1 ? (ippiMaskMeanFuncC1)ippiMean_16u_C1MR :
|
|
|
|
type == CV_32FC1 ? (ippiMaskMeanFuncC1)ippiMean_32f_C1MR :
|
|
|
|
0;
|
|
|
|
if( ippiMean_C1MR )
|
|
|
|
{
|
|
|
|
Ipp64f res;
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &res) >= 0 )
|
|
|
|
{
|
|
|
|
ret = Scalar(res);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *);
|
|
|
|
ippiMaskMeanFuncC3 ippiMean_C3MR =
|
|
|
|
type == CV_8UC3 ? (ippiMaskMeanFuncC3)ippiMean_8u_C3CMR :
|
|
|
|
type == CV_16UC3 ? (ippiMaskMeanFuncC3)ippiMean_16u_C3CMR :
|
|
|
|
type == CV_32FC3 ? (ippiMaskMeanFuncC3)ippiMean_32f_C3CMR :
|
|
|
|
0;
|
|
|
|
if( ippiMean_C3MR )
|
|
|
|
{
|
|
|
|
Ipp64f res1, res2, res3;
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &res1) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &res2) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &res3) >= 0 )
|
|
|
|
{
|
|
|
|
ret = Scalar(res1, res2, res3);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMeanFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm);
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMeanFuncNoHint)(const void*, int, IppiSize, double *);
|
|
|
|
ippiMeanFuncHint ippiMeanHint =
|
|
|
|
type == CV_32FC1 ? (ippiMeanFuncHint)ippiMean_32f_C1R :
|
|
|
|
type == CV_32FC3 ? (ippiMeanFuncHint)ippiMean_32f_C3R :
|
|
|
|
type == CV_32FC4 ? (ippiMeanFuncHint)ippiMean_32f_C4R :
|
|
|
|
0;
|
|
|
|
ippiMeanFuncNoHint ippiMean =
|
|
|
|
type == CV_8UC1 ? (ippiMeanFuncNoHint)ippiMean_8u_C1R :
|
|
|
|
type == CV_8UC3 ? (ippiMeanFuncNoHint)ippiMean_8u_C3R :
|
|
|
|
type == CV_8UC4 ? (ippiMeanFuncNoHint)ippiMean_8u_C4R :
|
|
|
|
type == CV_16UC1 ? (ippiMeanFuncNoHint)ippiMean_16u_C1R :
|
|
|
|
type == CV_16UC3 ? (ippiMeanFuncNoHint)ippiMean_16u_C3R :
|
|
|
|
type == CV_16UC4 ? (ippiMeanFuncNoHint)ippiMean_16u_C4R :
|
|
|
|
type == CV_16SC1 ? (ippiMeanFuncNoHint)ippiMean_16s_C1R :
|
|
|
|
type == CV_16SC3 ? (ippiMeanFuncNoHint)ippiMean_16s_C3R :
|
|
|
|
type == CV_16SC4 ? (ippiMeanFuncNoHint)ippiMean_16s_C4R :
|
|
|
|
0;
|
|
|
|
// Make sure only zero or one version of the function pointer is valid
|
|
|
|
CV_Assert(!ippiMeanHint || !ippiMean);
|
|
|
|
if( ippiMeanHint || ippiMean )
|
|
|
|
{
|
|
|
|
Ipp64f res[4];
|
|
|
|
IppStatus status = ippiMeanHint ? CV_INSTRUMENT_FUN_IPP(ippiMeanHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean, src.ptr(), (int)src.step[0], sz, res);
|
|
|
|
if( status >= 0 )
|
|
|
|
{
|
|
|
|
for( int i = 0; i < cn; i++ )
|
|
|
|
ret[i] = res[i];
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
Scalar mean(InputArray _src, InputArray _mask)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat();
|
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U );
|
|
|
|
|
|
|
|
int k, cn = src.channels(), depth = src.depth();
|
|
|
|
Scalar s;
|
|
|
|
|
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_mean(src, mask, s), s)
|
|
|
|
|
|
|
|
SumFunc func = getSumFunc(depth);
|
|
|
|
|
|
|
|
CV_Assert( cn <= 4 && func != 0 );
|
|
|
|
|
|
|
|
const Mat* arrays[] = {&src, &mask, 0};
|
2018-09-04 21:44:47 +08:00
|
|
|
uchar* ptrs[2] = {};
|
2018-02-06 20:54:14 +08:00
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
|
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
|
|
|
|
int j, count = 0;
|
|
|
|
AutoBuffer<int> _buf;
|
|
|
|
int* buf = (int*)&s[0];
|
|
|
|
bool blockSum = depth <= CV_16S;
|
|
|
|
size_t esz = 0, nz0 = 0;
|
|
|
|
|
|
|
|
if( blockSum )
|
|
|
|
{
|
|
|
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
|
|
|
|
blockSize = std::min(blockSize, intSumBlockSize);
|
|
|
|
_buf.allocate(cn);
|
2018-06-11 06:42:00 +08:00
|
|
|
buf = _buf.data();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
buf[k] = 0;
|
|
|
|
esz = src.elemSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
|
|
{
|
|
|
|
for( j = 0; j < total; j += blockSize )
|
|
|
|
{
|
|
|
|
int bsz = std::min(total - j, blockSize);
|
|
|
|
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn );
|
|
|
|
count += nz;
|
|
|
|
nz0 += nz;
|
|
|
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
s[k] += buf[k];
|
|
|
|
buf[k] = 0;
|
|
|
|
}
|
|
|
|
count = 0;
|
|
|
|
}
|
|
|
|
ptrs[0] += bsz*esz;
|
|
|
|
if( ptrs[1] )
|
|
|
|
ptrs[1] += bsz;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return s*(nz0 ? 1./nz0 : 0);
|
|
|
|
}
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
static SumSqrFunc getSumSqrFunc(int depth)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2019-02-19 21:58:32 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
CV_CPU_DISPATCH(getSumSqrFunc, (depth),
|
|
|
|
CV_CPU_DISPATCH_MODES_ALL);
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_OPENCL();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
bool haveMask = _mask.kind() != _InputArray::NONE;
|
|
|
|
int nz = haveMask ? -1 : (int)_src.total();
|
|
|
|
Scalar mean(0), stddev(0);
|
|
|
|
const int cn = _src.channels();
|
|
|
|
if (cn > 4)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
{
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type);
|
|
|
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
|
|
|
|
isContinuous = _src.isContinuous(),
|
|
|
|
isMaskContinuous = _mask.isContinuous();
|
|
|
|
const ocl::Device &defDev = ocl::Device::getDefault();
|
|
|
|
int groups = defDev.maxComputeUnits();
|
|
|
|
if (defDev.isIntel())
|
|
|
|
{
|
|
|
|
static const int subSliceEUCount = 10;
|
|
|
|
groups = (groups / subSliceEUCount) * 2;
|
|
|
|
}
|
|
|
|
size_t wgs = defDev.maxWorkGroupSize();
|
|
|
|
|
|
|
|
int ddepth = std::max(CV_32S, depth), sqddepth = std::max(CV_32F, depth),
|
|
|
|
dtype = CV_MAKE_TYPE(ddepth, cn),
|
|
|
|
sqdtype = CV_MAKETYPE(sqddepth, cn);
|
|
|
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
|
|
|
|
|
|
|
|
int wgs2_aligned = 1;
|
|
|
|
while (wgs2_aligned < (int)wgs)
|
|
|
|
wgs2_aligned <<= 1;
|
|
|
|
wgs2_aligned >>= 1;
|
|
|
|
|
|
|
|
if ( (!doubleSupport && depth == CV_64F) )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
char cvt[2][40];
|
|
|
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D sqddepth=%d"
|
|
|
|
" -D sqdstT=%s -D sqdstT1=%s -D convertToSDT=%s -D cn=%d%s%s"
|
|
|
|
" -D convertToDT=%s -D WGS=%d -D WGS2_ALIGNED=%d%s%s",
|
|
|
|
ocl::typeToStr(type), ocl::typeToStr(depth),
|
|
|
|
ocl::typeToStr(dtype), ocl::typeToStr(ddepth), sqddepth,
|
|
|
|
ocl::typeToStr(sqdtype), ocl::typeToStr(sqddepth),
|
|
|
|
ocl::convertTypeStr(depth, sqddepth, cn, cvt[0]),
|
|
|
|
cn, isContinuous ? " -D HAVE_SRC_CONT" : "",
|
|
|
|
isMaskContinuous ? " -D HAVE_MASK_CONT" : "",
|
|
|
|
ocl::convertTypeStr(depth, ddepth, cn, cvt[1]),
|
|
|
|
(int)wgs, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "",
|
|
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
|
|
|
|
|
|
|
ocl::Kernel k("meanStdDev", ocl::core::meanstddev_oclsrc, opts);
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int dbsize = groups * ((haveMask ? CV_ELEM_SIZE1(CV_32S) : 0) +
|
|
|
|
CV_ELEM_SIZE(sqdtype) + CV_ELEM_SIZE(dtype));
|
|
|
|
UMat src = _src.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat();
|
|
|
|
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
|
|
dbarg = ocl::KernelArg::PtrWriteOnly(db),
|
|
|
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
|
|
|
|
|
|
|
if (haveMask)
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg, maskarg);
|
|
|
|
else
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg);
|
|
|
|
|
|
|
|
size_t globalsize = groups * wgs;
|
|
|
|
|
|
|
|
if(!k.run(1, &globalsize, &wgs, false))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
typedef Scalar (* part_sum)(Mat m);
|
|
|
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> };
|
|
|
|
Mat dbm = db.getMat(ACCESS_READ);
|
|
|
|
|
|
|
|
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.ptr()));
|
|
|
|
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.ptr() + groups * CV_ELEM_SIZE(dtype)));
|
|
|
|
|
|
|
|
if (haveMask)
|
|
|
|
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.ptr() +
|
|
|
|
groups * (CV_ELEM_SIZE(dtype) +
|
|
|
|
CV_ELEM_SIZE(sqdtype))))[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
double total = nz != 0 ? 1.0 / nz : 0;
|
|
|
|
int k, j;
|
|
|
|
for (int i = 0; i < cn; ++i)
|
|
|
|
{
|
|
|
|
mean[i] *= total;
|
|
|
|
stddev[i] = std::sqrt(std::max(stddev[i] * total - mean[i] * mean[i] , 0.));
|
|
|
|
}
|
|
|
|
|
|
|
|
for( j = 0; j < 2; j++ )
|
|
|
|
{
|
|
|
|
const double * const sptr = j == 0 ? &mean[0] : &stddev[0];
|
|
|
|
_OutputArray _dst = j == 0 ? _mean : _sdv;
|
|
|
|
if( !_dst.needed() )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if( !_dst.fixedSize() )
|
|
|
|
_dst.create(cn, 1, CV_64F, -1, true);
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
int dcn = (int)dst.total();
|
|
|
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
|
|
|
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
|
|
|
|
double* dptr = dst.ptr<double>();
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
dptr[k] = sptr[k];
|
|
|
|
for( ; k < dcn; k++ )
|
|
|
|
dptr[k] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENVX
|
|
|
|
static bool openvx_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask)
|
|
|
|
{
|
|
|
|
size_t total_size = src.total();
|
|
|
|
int rows = src.size[0], cols = rows ? (int)(total_size / rows) : 0;
|
|
|
|
if (src.type() != CV_8UC1|| !mask.empty() ||
|
|
|
|
(src.dims != 2 && !(src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size))
|
|
|
|
)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
|
|
|
ivx::Context ctx = ovx::getOpenVXContext();
|
|
|
|
#ifndef VX_VERSION_1_1
|
|
|
|
if (ctx.vendorID() == VX_ID_KHRONOS)
|
|
|
|
return false; // Do not use OpenVX meanStdDev estimation for sample 1.0.1 implementation due to lack of accuracy
|
|
|
|
#endif
|
|
|
|
|
|
|
|
ivx::Image
|
|
|
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
|
|
|
|
ivx::Image::createAddressing(cols, rows, 1, (vx_int32)(src.step[0])), src.ptr());
|
|
|
|
|
|
|
|
vx_float32 mean_temp, stddev_temp;
|
|
|
|
ivx::IVX_CHECK_STATUS(vxuMeanStdDev(ctx, ia, &mean_temp, &stddev_temp));
|
|
|
|
|
|
|
|
if (_mean.needed())
|
|
|
|
{
|
|
|
|
if (!_mean.fixedSize())
|
|
|
|
_mean.create(1, 1, CV_64F, -1, true);
|
|
|
|
Mat mean = _mean.getMat();
|
|
|
|
CV_Assert(mean.type() == CV_64F && mean.isContinuous() &&
|
|
|
|
(mean.cols == 1 || mean.rows == 1) && mean.total() >= 1);
|
|
|
|
double *pmean = mean.ptr<double>();
|
|
|
|
pmean[0] = mean_temp;
|
|
|
|
for (int c = 1; c < (int)mean.total(); c++)
|
|
|
|
pmean[c] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_sdv.needed())
|
|
|
|
{
|
|
|
|
if (!_sdv.fixedSize())
|
|
|
|
_sdv.create(1, 1, CV_64F, -1, true);
|
|
|
|
Mat stddev = _sdv.getMat();
|
|
|
|
CV_Assert(stddev.type() == CV_64F && stddev.isContinuous() &&
|
|
|
|
(stddev.cols == 1 || stddev.rows == 1) && stddev.total() >= 1);
|
|
|
|
double *pstddev = stddev.ptr<double>();
|
|
|
|
pstddev[0] = stddev_temp;
|
|
|
|
for (int c = 1; c < (int)stddev.total(); c++)
|
|
|
|
pstddev[c] = 0;
|
|
|
|
}
|
|
|
|
}
|
2018-10-20 04:21:20 +08:00
|
|
|
catch (const ivx::RuntimeError & e)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
VX_DbgThrow(e.what());
|
|
|
|
}
|
2018-10-20 04:21:20 +08:00
|
|
|
catch (const ivx::WrapperError & e)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
VX_DbgThrow(e.what());
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP
|
|
|
|
static bool ipp_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask)
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_IPP();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
#if IPP_VERSION_X100 >= 700
|
|
|
|
int cn = src.channels();
|
|
|
|
|
|
|
|
#if IPP_VERSION_X100 < 201801
|
|
|
|
// IPP_DISABLE: C3C functions can read outside of allocated memory
|
|
|
|
if (cn > 1)
|
|
|
|
return false;
|
|
|
|
#endif
|
2018-10-26 19:57:20 +08:00
|
|
|
#if IPP_VERSION_X100 >= 201900 && IPP_VERSION_X100 < 201901
|
2018-10-24 20:02:53 +08:00
|
|
|
// IPP_DISABLE: 32f C3C functions can read outside of allocated memory
|
|
|
|
if (cn > 1 && src.depth() == CV_32F)
|
|
|
|
return false;
|
2018-10-26 19:57:20 +08:00
|
|
|
|
|
|
|
// SSE4.2 buffer overrun
|
|
|
|
#if defined(_WIN32) && !defined(_WIN64)
|
|
|
|
// IPPICV doesn't have AVX2 in 32-bit builds
|
|
|
|
// However cv::ipp::getIppTopFeatures() may return AVX2 value on AVX2 capable H/W
|
|
|
|
// details #12959
|
|
|
|
#else
|
|
|
|
if (cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) // Linux x64 + OPENCV_IPP=SSE42 is affected too
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
if (src.depth() == CV_32F && src.dims > 1 && src.size[src.dims - 1] == 6)
|
|
|
|
return false;
|
|
|
|
}
|
2018-10-24 20:02:53 +08:00
|
|
|
#endif
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
size_t total_size = src.total();
|
|
|
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
|
|
|
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
|
|
|
{
|
|
|
|
Ipp64f mean_temp[3];
|
|
|
|
Ipp64f stddev_temp[3];
|
|
|
|
Ipp64f *pmean = &mean_temp[0];
|
|
|
|
Ipp64f *pstddev = &stddev_temp[0];
|
|
|
|
Mat mean, stddev;
|
|
|
|
int dcn_mean = -1;
|
|
|
|
if( _mean.needed() )
|
|
|
|
{
|
|
|
|
if( !_mean.fixedSize() )
|
|
|
|
_mean.create(cn, 1, CV_64F, -1, true);
|
|
|
|
mean = _mean.getMat();
|
|
|
|
dcn_mean = (int)mean.total();
|
|
|
|
pmean = mean.ptr<Ipp64f>();
|
|
|
|
}
|
|
|
|
int dcn_stddev = -1;
|
|
|
|
if( _sdv.needed() )
|
|
|
|
{
|
|
|
|
if( !_sdv.fixedSize() )
|
|
|
|
_sdv.create(cn, 1, CV_64F, -1, true);
|
|
|
|
stddev = _sdv.getMat();
|
|
|
|
dcn_stddev = (int)stddev.total();
|
|
|
|
pstddev = stddev.ptr<Ipp64f>();
|
|
|
|
}
|
|
|
|
for( int c = cn; c < dcn_mean; c++ )
|
|
|
|
pmean[c] = 0;
|
|
|
|
for( int c = cn; c < dcn_stddev; c++ )
|
|
|
|
pstddev[c] = 0;
|
|
|
|
IppiSize sz = { cols, rows };
|
|
|
|
int type = src.type();
|
|
|
|
if( !mask.empty() )
|
|
|
|
{
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *, Ipp64f *);
|
|
|
|
ippiMaskMeanStdDevFuncC1 ippiMean_StdDev_C1MR =
|
|
|
|
type == CV_8UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_8u_C1MR :
|
|
|
|
type == CV_16UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_16u_C1MR :
|
|
|
|
type == CV_32FC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_32f_C1MR :
|
|
|
|
0;
|
|
|
|
if( ippiMean_StdDev_C1MR )
|
|
|
|
{
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, pmean, pstddev) >= 0 )
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
|
|
|
|
ippiMaskMeanStdDevFuncC3 ippiMean_StdDev_C3CMR =
|
|
|
|
type == CV_8UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CMR :
|
|
|
|
type == CV_16UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CMR :
|
|
|
|
type == CV_32FC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CMR :
|
|
|
|
0;
|
|
|
|
if( ippiMean_StdDev_C3CMR )
|
|
|
|
{
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC1)(const void *, int, IppiSize, Ipp64f *, Ipp64f *);
|
|
|
|
ippiMeanStdDevFuncC1 ippiMean_StdDev_C1R =
|
|
|
|
type == CV_8UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_8u_C1R :
|
|
|
|
type == CV_16UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_16u_C1R :
|
|
|
|
#if (IPP_VERSION_X100 >= 810)
|
|
|
|
type == CV_32FC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_32f_C1R ://Aug 2013: bug in IPP 7.1, 8.0
|
|
|
|
#endif
|
|
|
|
0;
|
|
|
|
if( ippiMean_StdDev_C1R )
|
|
|
|
{
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1R, src.ptr(), (int)src.step[0], sz, pmean, pstddev) >= 0 )
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC3)(const void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
|
|
|
|
ippiMeanStdDevFuncC3 ippiMean_StdDev_C3CR =
|
|
|
|
type == CV_8UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CR :
|
|
|
|
type == CV_16UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CR :
|
|
|
|
type == CV_32FC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CR :
|
|
|
|
0;
|
|
|
|
if( ippiMean_StdDev_C3CR )
|
|
|
|
{
|
|
|
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
CV_UNUSED(src); CV_UNUSED(_mean); CV_UNUSED(_sdv); CV_UNUSED(mask);
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
void meanStdDev(InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-07-18 20:24:58 +08:00
|
|
|
CV_Assert(!_src.empty());
|
|
|
|
CV_Assert( _mask.empty() || _mask.type() == CV_8UC1 );
|
|
|
|
|
2018-02-06 20:54:14 +08:00
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
|
|
|
|
ocl_meanStdDev(_src, _mean, _sdv, _mask))
|
|
|
|
|
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat();
|
|
|
|
|
|
|
|
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_MEAN_STDDEV>(src.cols, src.rows),
|
|
|
|
openvx_meanStdDev(src, _mean, _sdv, mask))
|
|
|
|
|
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_meanStdDev(src, _mean, _sdv, mask));
|
|
|
|
|
|
|
|
int k, cn = src.channels(), depth = src.depth();
|
|
|
|
|
2019-02-19 21:58:32 +08:00
|
|
|
SumSqrFunc func = getSumSqrFunc(depth);
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
CV_Assert( func != 0 );
|
|
|
|
|
|
|
|
const Mat* arrays[] = {&src, &mask, 0};
|
2018-09-04 21:44:47 +08:00
|
|
|
uchar* ptrs[2] = {};
|
2018-02-06 20:54:14 +08:00
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
|
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
|
|
|
|
int j, count = 0, nz0 = 0;
|
|
|
|
AutoBuffer<double> _buf(cn*4);
|
2018-06-11 06:42:00 +08:00
|
|
|
double *s = (double*)_buf.data(), *sq = s + cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
int *sbuf = (int*)s, *sqbuf = (int*)sq;
|
|
|
|
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S;
|
|
|
|
size_t esz = 0;
|
|
|
|
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
s[k] = sq[k] = 0;
|
|
|
|
|
|
|
|
if( blockSum )
|
|
|
|
{
|
|
|
|
intSumBlockSize = 1 << 15;
|
|
|
|
blockSize = std::min(blockSize, intSumBlockSize);
|
|
|
|
sbuf = (int*)(sq + cn);
|
|
|
|
if( blockSqSum )
|
|
|
|
sqbuf = sbuf + cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
sbuf[k] = sqbuf[k] = 0;
|
|
|
|
esz = src.elemSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
|
|
{
|
|
|
|
for( j = 0; j < total; j += blockSize )
|
|
|
|
{
|
|
|
|
int bsz = std::min(total - j, blockSize);
|
|
|
|
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn );
|
|
|
|
count += nz;
|
|
|
|
nz0 += nz;
|
|
|
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
s[k] += sbuf[k];
|
|
|
|
sbuf[k] = 0;
|
|
|
|
}
|
|
|
|
if( blockSqSum )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
sq[k] += sqbuf[k];
|
|
|
|
sqbuf[k] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
count = 0;
|
|
|
|
}
|
|
|
|
ptrs[0] += bsz*esz;
|
|
|
|
if( ptrs[1] )
|
|
|
|
ptrs[1] += bsz;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double scale = nz0 ? 1./nz0 : 0.;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
s[k] *= scale;
|
|
|
|
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.));
|
|
|
|
}
|
|
|
|
|
|
|
|
for( j = 0; j < 2; j++ )
|
|
|
|
{
|
|
|
|
const double* sptr = j == 0 ? s : sq;
|
|
|
|
_OutputArray _dst = j == 0 ? _mean : _sdv;
|
|
|
|
if( !_dst.needed() )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if( !_dst.fixedSize() )
|
|
|
|
_dst.create(cn, 1, CV_64F, -1, true);
|
|
|
|
Mat dst = _dst.getMat();
|
|
|
|
int dcn = (int)dst.total();
|
|
|
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
|
|
|
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
|
|
|
|
double* dptr = dst.ptr<double>();
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
dptr[k] = sptr[k];
|
|
|
|
for( ; k < dcn; k++ )
|
|
|
|
dptr[k] = 0;
|
|
|
|
}
|
|
|
|
}
|
2019-02-19 21:58:32 +08:00
|
|
|
|
|
|
|
} // namespace
|