opencv/modules/imgproc/src/opencl/warp_affine.cl

277 lines
10 KiB
Common Lisp
Raw Normal View History

2013-11-29 23:16:34 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Ying, zhangying913@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
2013-12-01 22:09:52 +08:00
#define CT double
2013-11-29 23:16:34 +08:00
#else
2013-12-01 22:09:52 +08:00
#define CT float
2013-11-29 23:16:34 +08:00
#endif
#define INTER_BITS 5
#define INTER_TAB_SIZE (1 << INTER_BITS)
#define INTER_SCALE 1.f/INTER_TAB_SIZE
#define AB_BITS max(10, (int)INTER_BITS)
#define AB_SCALE (1 << AB_BITS)
#define INTER_REMAP_COEF_BITS 15
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
2013-12-01 22:09:52 +08:00
#define noconvert
2013-11-29 23:16:34 +08:00
#ifndef ST
#define ST T
#endif
#if cn != 3
#define loadpix(addr) *(__global const T*)(addr)
#define storepix(val, addr) *(__global T*)(addr) = val
#define scalar scalar_
#define pixsize (int)sizeof(T)
#else
#define loadpix(addr) vload3(0, (__global const T1*)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr))
#ifdef INTER_NEAREST
#define scalar (T)(scalar_.x, scalar_.y, scalar_.z)
#else
#define scalar (WT)(scalar_.x, scalar_.y, scalar_.z)
#endif
#define pixsize ((int)sizeof(T1)*3)
#endif
2013-12-01 22:09:52 +08:00
#ifdef INTER_NEAREST
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant CT * M, ST scalar_)
2013-11-29 23:16:34 +08:00
{
int dx = get_global_id(0);
2014-05-31 00:12:22 +08:00
int dy0 = get_global_id(1) * rowsPerWI;
2013-11-29 23:16:34 +08:00
2014-05-31 00:12:22 +08:00
if (dx < dst_cols)
2013-11-29 23:16:34 +08:00
{
2013-12-01 22:09:52 +08:00
int round_delta = (AB_SCALE >> 1);
2013-11-29 23:16:34 +08:00
2014-05-31 00:12:22 +08:00
int X0_ = rint(M[0] * dx * AB_SCALE);
int Y0_ = rint(M[3] * dx * AB_SCALE);
int dst_index = mad24(dy0, dst_step, mad24(dx, pixsize, dst_offset));
2013-11-29 23:16:34 +08:00
2014-05-31 00:12:22 +08:00
for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy, dst_index += dst_step)
2013-11-29 23:16:34 +08:00
{
2014-05-31 00:12:22 +08:00
int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta;
int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta;
short sx = convert_short_sat(X0 >> AB_BITS);
short sy = convert_short_sat(Y0 >> AB_BITS);
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
{
int src_index = mad24(sy, src_step, mad24(sx, pixsize, src_offset));
storepix(loadpix(srcptr + src_index), dstptr + dst_index);
}
else
storepix(scalar, dstptr + dst_index);
2013-11-29 23:16:34 +08:00
}
}
}
2013-12-01 22:09:52 +08:00
#elif defined INTER_LINEAR
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant CT * M, ST scalar_)
2013-11-29 23:16:34 +08:00
{
int dx = get_global_id(0);
2014-05-31 00:12:22 +08:00
int dy0 = get_global_id(1) * rowsPerWI;
2013-11-29 23:16:34 +08:00
2014-05-31 00:12:22 +08:00
if (dx < dst_cols)
2013-11-29 23:16:34 +08:00
{
int round_delta = AB_SCALE/INTER_TAB_SIZE/2;
int tmp = (dx << AB_BITS);
2014-05-31 00:12:22 +08:00
int X0_ = rint(M[0] * tmp);
int Y0_ = rint(M[3] * tmp);
2013-12-01 22:09:52 +08:00
2014-05-31 00:12:22 +08:00
for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy)
{
int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta;
int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta;
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
short sx = convert_short_sat(X0 >> INTER_BITS);
short sy = convert_short_sat(Y0 >> INTER_BITS);
short ax = convert_short(X0 & (INTER_TAB_SIZE-1));
short ay = convert_short(Y0 & (INTER_TAB_SIZE-1));
WT v0 = scalar, v1 = scalar, v2 = scalar, v3 = scalar;
if (sx >= 0 && sx < src_cols)
{
if (sy >= 0 && sy < src_rows)
v0 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx, pixsize, src_offset))));
if (sy+1 >= 0 && sy+1 < src_rows)
v2 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx, pixsize, src_offset))));
}
if (sx+1 >= 0 && sx+1 < src_cols)
{
if (sy >= 0 && sy < src_rows)
v1 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx+1, pixsize, src_offset))));
if (sy+1 >= 0 && sy+1 < src_rows)
v3 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx+1, pixsize, src_offset))));
}
float taby = 1.f/INTER_TAB_SIZE*ay;
float tabx = 1.f/INTER_TAB_SIZE*ax;
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
2013-12-01 22:09:52 +08:00
#if depth <= 4
2014-05-31 00:12:22 +08:00
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
2013-12-01 22:09:52 +08:00
2014-05-31 00:12:22 +08:00
WT val = mad24(v0, itab0, mad24(v1, itab1, mad24(v2, itab2, v3 * itab3)));
storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index);
2013-12-01 22:09:52 +08:00
#else
2014-05-31 00:12:22 +08:00
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
WT val = fma(v0, tabx2 * taby2, fma(v1, tabx * taby2, fma(v2, tabx2 * taby, v3 * tabx * taby)));
storepix(convertToT(val), dstptr + dst_index);
2013-12-01 22:09:52 +08:00
#endif
2014-05-31 00:12:22 +08:00
}
2013-12-01 22:09:52 +08:00
}
}
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
#elif defined INTER_CUBIC
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
inline void interpolateCubic( float x, float* coeffs )
{
const float A = -0.75f;
2013-11-29 23:16:34 +08:00
2014-05-31 00:12:22 +08:00
coeffs[0] = fma(fma(fma(A, (x + 1.f), - 5.0f*A), (x + 1.f), 8.0f*A), x + 1.f, - 4.0f*A);
coeffs[1] = fma(fma(A + 2.f, x, - (A + 3.f)), x*x, 1.f);
coeffs[2] = fma(fma(A + 2.f, 1.f - x, - (A + 3.f)), (1.f - x)*(1.f - x), 1.f);
2013-12-01 22:09:52 +08:00
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
2013-11-29 23:16:34 +08:00
}
2013-12-01 22:09:52 +08:00
__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__constant CT * M, ST scalar_)
2013-11-29 23:16:34 +08:00
{
int dx = get_global_id(0);
int dy = get_global_id(1);
2013-12-01 22:09:52 +08:00
if (dx < dst_cols && dy < dst_rows)
2013-11-29 23:16:34 +08:00
{
int round_delta = ((AB_SCALE>>INTER_BITS)>>1);
int tmp = (dx << AB_BITS);
int X0 = rint(M[0] * tmp);
int Y0 = rint(M[3] * tmp);
2014-05-31 00:12:22 +08:00
X0 += rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta;
Y0 += rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta;
2013-11-29 23:16:34 +08:00
X0 = X0 >> (AB_BITS - INTER_BITS);
Y0 = Y0 >> (AB_BITS - INTER_BITS);
int sx = (short)(X0 >> INTER_BITS) - 1;
int sy = (short)(Y0 >> INTER_BITS) - 1;
int ay = (short)(Y0 & (INTER_TAB_SIZE-1));
int ax = (short)(X0 & (INTER_TAB_SIZE-1));
2013-12-01 22:09:52 +08:00
WT v[16];
#pragma unroll
for (int y = 0; y < 4; y++)
2014-05-31 00:12:22 +08:00
{
if (sy+y >= 0 && sy+y < src_rows)
{
#pragma unroll
for (int x = 0; x < 4; x++)
v[mad24(y, 4, x)] = sx+x >= 0 && sx+x < src_cols ?
convertToWT(loadpix(srcptr + mad24(sy+y, src_step, mad24(sx+x, pixsize, src_offset)))) : scalar;
}
else
{
#pragma unroll
for (int x = 0; x < 4; x++)
v[mad24(y, 4, x)] = scalar;
}
}
2013-11-29 23:16:34 +08:00
float tab1y[4], tab1x[4];
2013-12-01 22:09:52 +08:00
float ayy = INTER_SCALE * ay;
float axx = INTER_SCALE * ax;
2013-11-29 23:16:34 +08:00
interpolateCubic(ayy, tab1y);
interpolateCubic(axx, tab1x);
2014-05-31 00:12:22 +08:00
int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
WT sum = (WT)(0);
#if depth <= 4
int itab[16];
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
#pragma unroll
for (int i = 0; i < 16; i++)
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
2013-11-29 23:16:34 +08:00
2013-12-01 22:09:52 +08:00
#pragma unroll
for (int i = 0; i < 16; i++)
2014-05-31 00:12:22 +08:00
sum = mad24(v[i], itab[i], sum);
storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index);
2013-12-01 22:09:52 +08:00
#else
#pragma unroll
for (int i = 0; i < 16; i++)
2014-05-31 00:12:22 +08:00
sum = fma(v[i], tab1y[(i>>2)] * tab1x[(i&3)], sum);
storepix(convertToT( sum ), dstptr + dst_index);
2013-12-01 22:09:52 +08:00
#endif
2013-11-29 23:16:34 +08:00
}
}
2013-12-01 22:09:52 +08:00
#endif