2010-12-21 17:24:36 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "blobdetector.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
BlobDetectorParameters::BlobDetectorParameters()
|
|
|
|
{
|
|
|
|
thresholdStep = 10;
|
|
|
|
minThreshold = 50;
|
|
|
|
maxThreshold = 220;
|
|
|
|
maxCentersDist = 10;
|
|
|
|
defaultKeypointSize = 1;
|
|
|
|
minRepeatability = 2;
|
|
|
|
filterByColor = true;
|
|
|
|
computeRadius = true;
|
|
|
|
|
|
|
|
isGrayscaleCentroid = false;
|
|
|
|
centroidROIMargin = 2;
|
|
|
|
|
|
|
|
filterByArea = true;
|
|
|
|
minArea = 25;
|
|
|
|
maxArea = 5000;
|
|
|
|
|
|
|
|
filterByInertia = true;
|
|
|
|
//minInertiaRatio = 0.6;
|
2010-12-21 20:11:28 +08:00
|
|
|
minInertiaRatio = 0.1f;
|
2010-12-21 17:24:36 +08:00
|
|
|
|
|
|
|
filterByConvexity = true;
|
|
|
|
//minConvexity = 0.8;
|
2010-12-21 20:11:28 +08:00
|
|
|
minConvexity = 0.95f;
|
2010-12-21 17:24:36 +08:00
|
|
|
|
|
|
|
filterByCircularity = false;
|
2010-12-21 20:11:28 +08:00
|
|
|
minCircularity = 0.8f;
|
2010-12-21 17:24:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
BlobDetector::BlobDetector(const BlobDetectorParameters ¶meters) :
|
|
|
|
params(parameters)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2010-12-21 18:08:57 +08:00
|
|
|
void BlobDetector::detect(const cv::Mat& image, vector<cv::Point2f>& keypoints, const cv::Mat& mask) const
|
2010-12-21 17:24:36 +08:00
|
|
|
{
|
|
|
|
detectImpl(image, keypoints, mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d BlobDetector::computeGrayscaleCentroid(const Mat &image, const vector<Point> &contour) const
|
|
|
|
{
|
|
|
|
Rect rect = boundingRect(Mat(contour));
|
|
|
|
rect.x -= params.centroidROIMargin;
|
|
|
|
rect.y -= params.centroidROIMargin;
|
|
|
|
rect.width += 2 * params.centroidROIMargin;
|
|
|
|
rect.height += 2 * params.centroidROIMargin;
|
|
|
|
|
|
|
|
rect.x = rect.x < 0 ? 0 : rect.x;
|
|
|
|
rect.y = rect.y < 0 ? 0 : rect.y;
|
|
|
|
rect.width = rect.x + rect.width < image.cols ? rect.width : image.cols - rect.x;
|
|
|
|
rect.height = rect.y + rect.height < image.rows ? rect.height : image.rows - rect.y;
|
|
|
|
|
|
|
|
Mat roi = image(rect);
|
|
|
|
assert( roi.type() == CV_8UC1 );
|
|
|
|
|
|
|
|
Mat invRoi = 255 - roi;
|
|
|
|
invRoi.convertTo(invRoi, CV_32FC1);
|
|
|
|
invRoi = invRoi.mul(invRoi);
|
|
|
|
|
|
|
|
Moments moms = moments(invRoi);
|
|
|
|
|
|
|
|
Point2d tl = rect.tl();
|
|
|
|
Point2d roiCentroid(moms.m10 / moms.m00, moms.m01 / moms.m00);
|
|
|
|
|
|
|
|
Point2d centroid = tl + roiCentroid;
|
|
|
|
return centroid;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, vector<Center> ¢ers) const
|
|
|
|
{
|
|
|
|
centers.clear();
|
|
|
|
|
|
|
|
vector<vector<Point> > contours;
|
|
|
|
Mat tmpBinaryImage = binaryImage.clone();
|
|
|
|
findContours(tmpBinaryImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
|
|
|
|
|
|
|
|
//Mat keypointsImage;
|
|
|
|
//cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
|
|
|
|
|
|
|
|
//Mat contoursImage;
|
|
|
|
//cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
|
|
|
|
//drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
|
|
|
|
//imshow("contours", contoursImage );
|
|
|
|
|
|
|
|
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
|
|
|
|
{
|
|
|
|
Center center;
|
|
|
|
center.confidence = 1;
|
|
|
|
Moments moms = moments(Mat(contours[contourIdx]));
|
|
|
|
if (params.filterByArea)
|
|
|
|
{
|
|
|
|
double area = moms.m00;
|
|
|
|
if (area < params.minArea || area > params.maxArea)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.filterByCircularity)
|
|
|
|
{
|
|
|
|
double area = moms.m00;
|
|
|
|
double perimeter = arcLength(Mat(contours[contourIdx]), true);
|
2010-12-21 19:39:12 +08:00
|
|
|
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
|
2010-12-21 17:24:36 +08:00
|
|
|
if (ratio < params.minCircularity)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.filterByInertia)
|
|
|
|
{
|
|
|
|
double denominator = sqrt(pow(2 * moms.mu11, 2) + pow(moms.mu20 - moms.mu02, 2));
|
|
|
|
const double eps = 1e-2;
|
|
|
|
double ratio;
|
|
|
|
if (denominator > eps)
|
|
|
|
{
|
|
|
|
double cosmin = (moms.mu20 - moms.mu02) / denominator;
|
|
|
|
double sinmin = 2 * moms.mu11 / denominator;
|
|
|
|
double cosmax = -cosmin;
|
|
|
|
double sinmax = -sinmin;
|
|
|
|
|
|
|
|
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
|
|
|
|
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
|
|
|
|
ratio = imin / imax;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ratio = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ratio < params.minInertiaRatio)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
center.confidence = ratio * ratio;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.filterByConvexity)
|
|
|
|
{
|
|
|
|
vector<Point> hull;
|
|
|
|
convexHull(Mat(contours[contourIdx]), hull);
|
|
|
|
double area = contourArea(Mat(contours[contourIdx]));
|
|
|
|
double hullArea = contourArea(Mat(hull));
|
|
|
|
double ratio = area / hullArea;
|
|
|
|
if (ratio < params.minConvexity)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.isGrayscaleCentroid)
|
|
|
|
center.location = computeGrayscaleCentroid(image, contours[contourIdx]);
|
|
|
|
else
|
|
|
|
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
|
|
|
|
|
|
|
|
if (params.filterByColor)
|
|
|
|
{
|
2010-12-21 20:11:28 +08:00
|
|
|
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) == 255)
|
2010-12-21 17:24:36 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (params.computeRadius)
|
|
|
|
{
|
|
|
|
vector<double> dists;
|
|
|
|
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
|
|
|
|
{
|
|
|
|
Point2d pt = contours[contourIdx][pointIdx];
|
|
|
|
dists.push_back(norm(center.location - pt));
|
|
|
|
}
|
|
|
|
std::sort(dists.begin(), dists.end());
|
|
|
|
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
|
|
|
|
}
|
|
|
|
|
|
|
|
centers.push_back(center);
|
|
|
|
|
|
|
|
//circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
|
|
|
|
}
|
|
|
|
//imshow("bk", keypointsImage );
|
|
|
|
//waitKey();
|
|
|
|
}
|
|
|
|
|
2010-12-21 18:08:57 +08:00
|
|
|
void BlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::Point2f>& keypoints, const cv::Mat& mask) const
|
2010-12-21 17:24:36 +08:00
|
|
|
{
|
|
|
|
keypoints.clear();
|
|
|
|
Mat grayscaleImage;
|
|
|
|
if (image.channels() == 3)
|
|
|
|
cvtColor(image, grayscaleImage, CV_BGR2GRAY);
|
|
|
|
else
|
|
|
|
grayscaleImage = image;
|
|
|
|
|
|
|
|
vector<vector<Center> > centers;
|
|
|
|
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
|
|
|
|
{
|
|
|
|
Mat binarizedImage;
|
|
|
|
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
|
|
|
|
|
|
|
|
//Mat keypointsImage;
|
|
|
|
//cvtColor( binarizedImage, keypointsImage, CV_GRAY2RGB );
|
|
|
|
|
|
|
|
vector<Center> curCenters;
|
|
|
|
findBlobs(grayscaleImage, binarizedImage, curCenters);
|
|
|
|
for (size_t i = 0; i < curCenters.size(); i++)
|
|
|
|
{
|
|
|
|
//circle(keypointsImage, curCenters[i].location, 1, Scalar(0,0,255),-1);
|
|
|
|
|
|
|
|
bool isNew = true;
|
|
|
|
for (size_t j = 0; j < centers.size(); j++)
|
|
|
|
{
|
|
|
|
double dist = norm(centers[j][0].location - curCenters[i].location);
|
|
|
|
if (params.computeRadius)
|
|
|
|
isNew = dist >= centers[j][0].radius && dist >= curCenters[i].radius && dist >= params.maxCentersDist;
|
|
|
|
else
|
|
|
|
isNew = dist >= params.maxCentersDist;
|
|
|
|
if (!isNew)
|
|
|
|
{
|
|
|
|
centers[j].push_back(curCenters[i]);
|
|
|
|
// if( centers[j][0].radius < centers[j][ centers[j].size()-1 ].radius )
|
|
|
|
// {
|
|
|
|
// std::swap( centers[j][0], centers[j][ centers[j].size()-1 ] );
|
|
|
|
// }
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (isNew)
|
|
|
|
{
|
|
|
|
centers.push_back(vector<Center> (1, curCenters[i]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//imshow("binarized", keypointsImage );
|
|
|
|
//waitKey();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < centers.size(); i++)
|
|
|
|
{
|
|
|
|
if (centers[i].size() < params.minRepeatability)
|
|
|
|
continue;
|
|
|
|
Point2d sumPoint(0, 0);
|
|
|
|
double normalizer = 0;
|
|
|
|
for (size_t j = 0; j < centers[i].size(); j++)
|
|
|
|
{
|
|
|
|
sumPoint += centers[i][j].confidence * centers[i][j].location;
|
|
|
|
normalizer += centers[i][j].confidence;
|
|
|
|
}
|
|
|
|
sumPoint *= (1. / normalizer);
|
2010-12-21 18:08:57 +08:00
|
|
|
keypoints.push_back(sumPoint);
|
2010-12-21 17:24:36 +08:00
|
|
|
}
|
|
|
|
}
|