opencv/modules/dnn/src/op_inf_engine.cpp

393 lines
12 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& _layer)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}
void InfEngineBackendNode::connect(std::vector<Ptr<BackendWrapper> >& inputs,
std::vector<Ptr<BackendWrapper> >& outputs)
{
layer->insData.resize(inputs.size());
for (int i = 0; i < inputs.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(inputs[i]);
layer->insData[i] = InferenceEngine::DataWeakPtr(dataPtr);
dataPtr->inputTo[layer->name] = layer;
}
CV_Assert(!outputs.empty());
layer->outData.resize(1);
InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
dataPtr->name = layer->name;
layer->outData[0] = dataPtr;
dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(layer);
}
static std::vector<Ptr<InfEngineBackendWrapper> >
infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
for (int i = 0; i < ptrs.size(); ++i)
{
CV_Assert(!ptrs[i].empty());
wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!wrappers[i].empty());
}
return wrappers;
}
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32,
InferenceEngine::Layout::ANY)
);
}
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape)
{
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
shape, (float*)m.data);
}
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m)
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return wrapToInfEngineBlob(m, reversedShape);
}
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
{
CV_Assert(!ptr.empty());
Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!p.empty());
return p->dataPtr;
}
InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId)
{
dataPtr = wrapToInfEngineDataNode(m);
blob = wrapToInfEngineBlob(m);
}
InfEngineBackendWrapper::~InfEngineBackendWrapper()
{
}
void InfEngineBackendWrapper::copyToHost()
{
}
void InfEngineBackendWrapper::setHostDirty()
{
}
void InfEngineBackendNet::Release() noexcept
{
layers.clear();
inputs.clear();
outputs.clear();
}
InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept
{
return InferenceEngine::Precision::FP32;
}
// Assume that outputs of network is unconnected blobs.
void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) noexcept
{
outputs_ = outputs;
}
// Returns input references that aren't connected to internal outputs.
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept
{
inputs_ = inputs;
}
InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) noexcept
{
getInputsInfo(inputs);
const auto& it = inputs.find(inputName);
CV_Assert(it != inputs.end());
return it->second;
}
void InfEngineBackendNet::getName(char *pName, size_t len) noexcept
{
CV_Error(Error::StsNotImplemented, "");
}
size_t InfEngineBackendNet::layerCount() noexcept
{
return layers.size();
}
InferenceEngine::DataPtr& InfEngineBackendNet::getData(const char *dname) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return outputs.begin()->second; // Just return something.
}
void InfEngineBackendNet::addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept
{
layers.push_back(layer);
inputs.clear();
outputs.clear();
}
InferenceEngine::StatusCode
InfEngineBackendNet::addOutput(const std::string &layerName, size_t outputIndex,
InferenceEngine::ResponseDesc *resp) noexcept
{
for (const auto& l : layers)
{
for (const InferenceEngine::DataPtr& out : l->outData)
{
if (out->name == layerName)
{
outputs[out->name] = out;
return InferenceEngine::StatusCode::OK;
}
}
}
CV_Error(Error::StsObjectNotFound, "Cannot find a layer " + layerName);
return InferenceEngine::StatusCode::OK;
}
InferenceEngine::StatusCode
InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out,
InferenceEngine::ResponseDesc *resp) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
void InfEngineBackendNet::setTargetDevice(InferenceEngine::TargetDevice device) noexcept
{
if (device != InferenceEngine::TargetDevice::eCPU)
CV_Error(Error::StsNotImplemented, "");
}
InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() noexcept
{
return InferenceEngine::TargetDevice::eCPU;
}
InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(const size_t size) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
size_t InfEngineBackendNet::getBatchSize() const noexcept
{
CV_Error(Error::StsNotImplemented, "");
return 0;
}
void InfEngineBackendNet::initEngine()
{
CV_Assert(!isInitialized(), !layers.empty());
// Collect all external input blobs.
std::map<std::string, InferenceEngine::DataPtr> internalOutputs;
for (const auto& l : layers)
{
for (const InferenceEngine::DataWeakPtr& ptr : l->insData)
{
InferenceEngine::DataPtr inp(ptr);
if (internalOutputs.find(inp->name) == internalOutputs.end())
{
InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo());
inpInfo->setInputData(inp);
if (inputs.find(inp->name) == inputs.end())
inputs[inp->name] = inpInfo;
}
}
for (const InferenceEngine::DataPtr& out : l->outData)
{
// TODO: Replace to uniquness assertion.
if (internalOutputs.find(out->name) == internalOutputs.end())
internalOutputs[out->name] = out;
}
}
CV_Assert(!inputs.empty());
// Add all unconnected blobs to output blobs.
InferenceEngine::OutputsDataMap unconnectedOuts;
for (const auto& l : layers)
{
// Add all outputs.
for (const InferenceEngine::DataPtr& out : l->outData)
{
// TODO: Replace to uniquness assertion.
if (unconnectedOuts.find(out->name) == unconnectedOuts.end())
unconnectedOuts[out->name] = out;
}
// Remove internally connected outputs.
for (const InferenceEngine::DataWeakPtr& inp : l->insData)
{
unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name);
}
}
CV_Assert(!unconnectedOuts.empty());
for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it)
{
outputs[it->first] = it->second;
}
// Set up input blobs.
inpBlobs.clear();
for (const auto& it : inputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
inpBlobs[it.first] = allBlobs[it.first];
}
// Set up output blobs.
outBlobs.clear();
for (const auto& it : outputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
outBlobs[it.first] = allBlobs[it.first];
}
#ifdef _WIN32
engine = InferenceEngine::InferenceEnginePluginPtr("MKLDNNPlugin.dll");
#else
engine = InferenceEngine::InferenceEnginePluginPtr("libMKLDNNPlugin.so");
#endif // _WIN32
InferenceEngine::ResponseDesc resp;
InferenceEngine::StatusCode status = engine->LoadNetwork(*this, &resp);
if (status != InferenceEngine::StatusCode::OK)
CV_Error(Error::StsAssert, resp.msg);
}
bool InfEngineBackendNet::isInitialized()
{
return (bool)engine;
}
void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
auto wrappers = infEngineWrappers(ptrs);
for (const auto& wrapper : wrappers)
{
allBlobs[wrapper->dataPtr->name] = wrapper->blob;
}
}
void InfEngineBackendNet::forward()
{
InferenceEngine::ResponseDesc resp;
InferenceEngine::StatusCode status = engine->Infer(inpBlobs, outBlobs, &resp);
if (status != InferenceEngine::StatusCode::OK)
CV_Error(Error::StsAssert, resp.msg);
}
static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
// NOTE: Inference Engine sizes are reversed.
std::vector<size_t> dims = blob->dims();
std::vector<int> size(dims.begin(), dims.end());
std::reverse(size.begin(), size.end());
return Mat(size, CV_32F, (void*)blob->buffer());
}
void fuseConvWeights(const std::shared_ptr<InferenceEngine::ConvolutionLayer>& conv,
const Mat& w, const Mat& b)
{
CV_Assert(!w.empty() || !b.empty());
if (!w.empty())
{
// Get convolution's weights. Clone the data because Inference Engine can host it
// and conv->_weights->allocate() below will deallocate it.
Mat originWeights = infEngineBlobToMat(conv->_weights).clone();
// Create new weights blob.
conv->_weights = InferenceEngine::make_shared_blob<float>(
InferenceEngine::Precision::FP32, conv->_weights->dims());
conv->_weights->allocate();
// Convolution weights have OIHW data layout.
// (conv(I) + b1 ) * w + b2
// w*conv(I) + b1 * w + b2
Mat fusedWeights = infEngineBlobToMat(conv->_weights);
const int numChannels = fusedWeights.size[0];
// Mat weights = blobs[0].reshape(1, 1);
// Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat();
CV_Assert(numChannels == w.total());
CV_Assert(b.empty() || numChannels == b.total());
for (int i = 0; i < numChannels; ++i)
{
cv::multiply(slice(originWeights, i), w.at<float>(i), slice(fusedWeights, i));
}
}
if (conv->_biases)
{
// The same for biases.
Mat originBiases = infEngineBlobToMat(conv->_biases).clone();
conv->_biases = InferenceEngine::make_shared_blob<float>(
InferenceEngine::Precision::FP32, conv->_biases->dims());
conv->_biases->allocate();
Mat fusedBiases = infEngineBlobToMat(conv->_biases);
originBiases.copyTo(fusedBiases);
if (!w.empty())
cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases, fusedBiases);
if (!b.empty())
cv::add(fusedBiases, b.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases);
}
else
conv->_biases = wrapToInfEngineBlob(b);
}
#endif // HAVE_INF_ENGINE
bool haveInfEngine()
{
#ifdef HAVE_INF_ENGINE
return true;
#else
return false;
#endif // HAVE_INF_ENGINE
}
void forwardInfEngine(Ptr<BackendNode>& node)
{
CV_Assert(haveInfEngine());
#ifdef HAVE_INF_ENGINE
CV_Assert(!node.empty());
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty());
ieNode->net->forward();
#endif // HAVE_INF_ENGINE
}
}} // namespace dnn, namespace cv