opencv/modules/gpu/src/cascadeclassifier.cpp

961 lines
36 KiB
C++
Raw Normal View History

2012-08-02 17:18:55 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
2012-08-02 17:18:55 +08:00
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
2012-08-02 17:18:55 +08:00
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
#include <iostream>
using namespace cv;
using namespace cv::gpu;
2012-07-24 17:41:19 +08:00
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
2012-07-24 17:41:19 +08:00
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_no_cuda(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const String&) { throw_no_cuda(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_no_cuda(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_no_cuda(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const String&) { throw_no_cuda(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_no_cuda(); return Size();}
void cv::gpu::CascadeClassifier_GPU::release() { throw_no_cuda(); }
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size) {throw_no_cuda(); return -1;}
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_no_cuda(); return -1;}
2012-07-24 17:41:19 +08:00
#else
2012-07-24 17:41:19 +08:00
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
2012-07-24 17:41:19 +08:00
{
public:
CascadeClassifierImpl(){}
virtual ~CascadeClassifierImpl(){}
2012-07-24 17:41:19 +08:00
virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0;
2012-07-24 17:41:19 +08:00
virtual cv::Size getClassifierCvSize() const = 0;
virtual bool read(const String& classifierAsXml) = 0;
2012-07-24 17:41:19 +08:00
};
struct cv::gpu::CascadeClassifier_GPU::HaarCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
2012-07-24 17:41:19 +08:00
{
public:
HaarCascade() : lastAllocatedFrameSize(-1, -1)
2012-07-24 17:41:19 +08:00
{
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
2012-07-24 17:41:19 +08:00
}
bool read(const String& filename)
2012-07-24 17:41:19 +08:00
{
ncvSafeCall( load(filename) );
return true;
}
2012-07-24 17:41:19 +08:00
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize,
/*out*/unsigned int& numDetections)
{
calculateMemReqsAndAllocate(src.size());
2012-08-02 17:18:55 +08:00
NCVMemPtr src_beg;
src_beg.ptr = (void*)src.ptr<Ncv8u>();
src_beg.memtype = NCVMemoryTypeDevice;
NCVMemSegment src_seg;
src_seg.begin = src_beg;
src_seg.size = src.step * src.rows;
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
CV_Assert(objects.rows == 1);
NCVMemPtr objects_beg;
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
objects_beg.memtype = NCVMemoryTypeDevice;
NCVMemSegment objects_seg;
objects_seg.begin = objects_beg;
objects_seg.size = objects.step * objects.rows;
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height);
2012-08-02 17:18:55 +08:00
Ncv32u flags = 0;
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
ncvStat = ncvDetectObjectsMultiScale_device(
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures,
winMinSize,
2012-08-02 17:18:55 +08:00
minNeighbors,
scaleStep, 1,
flags,
*gpuAllocator, *cpuAllocator, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors,
2012-08-20 04:06:12 +08:00
bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size /*maxObjectSize*/)
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
2012-08-02 17:18:55 +08:00
const int defaultObjSearchNum = 100;
if (objectsBuf.empty())
{
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
}
2012-08-02 17:18:55 +08:00
cv::Size ncvMinSize = this->getClassifierCvSize();
2012-08-02 17:18:55 +08:00
if (ncvMinSize.width < minSize.width && ncvMinSize.height < minSize.height)
{
ncvMinSize.width = minSize.width;
ncvMinSize.height = minSize.height;
}
2012-08-02 17:18:55 +08:00
unsigned int numDetections;
ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections));
2012-08-02 17:18:55 +08:00
return numDetections;
}
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
2012-08-02 17:18:55 +08:00
private:
static void NCVDebugOutputHandler(const String &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
2012-08-02 17:18:55 +08:00
NCVStatus load(const String& classifierFile)
2012-08-02 17:18:55 +08:00
{
int devId = cv::gpu::getDevice();
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
return NCV_SUCCESS;
}
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
{
if (lastAllocatedFrameSize == frameSize)
{
return NCV_SUCCESS;
}
// Calculate memory requirements and create real allocators
NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
Ncv32u numDetections;
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
lastAllocatedFrameSize = frameSize;
return NCV_SUCCESS;
}
cudaDeviceProp devProp;
NCVStatus ncvStat;
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
HaarClassifierCascadeDescriptor haar;
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
Size lastAllocatedFrameSize;
Ptr<NCVMemStackAllocator> gpuAllocator;
Ptr<NCVMemStackAllocator> cpuAllocator;
virtual ~HaarCascade(){}
2012-08-02 17:18:55 +08:00
};
cv::Size operator -(const cv::Size& a, const cv::Size& b)
{
return cv::Size(a.width - b.width, a.height - b.height);
}
2012-08-02 17:18:55 +08:00
cv::Size operator +(const cv::Size& a, const int& i)
{
return cv::Size(a.width + i, a.height + i);
}
2012-08-02 17:18:55 +08:00
cv::Size operator *(const cv::Size& a, const float& f)
{
return cv::Size(cvRound(a.width * f), cvRound(a.height * f));
}
2012-08-02 17:18:55 +08:00
cv::Size operator /(const cv::Size& a, const float& f)
2012-08-02 17:18:55 +08:00
{
return cv::Size(cvRound(a.width / f), cvRound(a.height / f));
}
bool operator <=(const cv::Size& a, const cv::Size& b)
{
return a.width <= b.width && a.height <= b.width;
2012-08-02 17:18:55 +08:00
}
struct PyrLavel
{
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize)
{
do
{
order = _order;
scale = pow(_scale, order);
sFrame = frame / scale;
workArea = sFrame - window + 1;
sWindow = window * scale;
_order++;
} while (sWindow <= minObjectSize);
}
bool isFeasible(cv::Size maxObj)
{
return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj;
}
PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize)
{
return PyrLavel(order + 1, factor, frame, window, minObjectSize);
}
int order;
float scale;
cv::Size sFrame;
cv::Size workArea;
cv::Size sWindow;
};
2013-04-04 19:36:22 +08:00
namespace cv { namespace gpu { namespace cudev
{
namespace lbp
{
void classifyPyramid(int frameW,
int frameH,
int windowW,
int windowH,
float initalScale,
float factor,
int total,
const PtrStepSzb& mstages,
const int nstages,
const PtrStepSzi& mnodes,
const PtrStepSzf& mleaves,
const PtrStepSzi& msubsets,
const PtrStepSzb& mfeatures,
const int subsetSize,
PtrStepSz<int4> objects,
unsigned int* classified,
PtrStepSzi integral);
void connectedConmonents(PtrStepSz<int4> candidates, int ncandidates, PtrStepSz<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
}
}}}
struct cv::gpu::CascadeClassifier_GPU::LbpCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
{
public:
struct Stage
{
int first;
int ntrees;
float threshold;
};
LbpCascade(){}
virtual ~LbpCascade(){}
2012-08-20 04:06:12 +08:00
virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool /*findLargestObject*/,
bool /*visualizeInPlace*/, cv::Size minObjectSize, cv::Size maxObjectSize)
{
CV_Assert(scaleFactor > 1 && image.depth() == CV_8U);
2012-08-20 04:06:12 +08:00
// const int defaultObjSearchNum = 100;
const float grouping_eps = 0.2f;
if( !objects.empty() && objects.depth() == CV_32S)
objects.reshape(4, 1);
else
objects.create(1 , image.cols >> 4, CV_32SC4);
// used for debug
// candidates.setTo(cv::Scalar::all(0));
// objects.setTo(cv::Scalar::all(0));
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
allocateBuffers(image.size());
unsigned int classified = 0;
GpuMat dclassified(1, 1, CV_32S);
cvCudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );
PyrLavel level(0, 1.0f, image.size(), NxM, minObjectSize);
while (level.isFeasible(maxObjectSize))
{
int acc = level.sFrame.width + 1;
float iniScale = level.scale;
cv::Size area = level.workArea;
int step = 1 + (level.scale <= 2.f);
int total = 0, prev = 0;
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize))
{
// create sutable matrix headers
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height));
GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1));
GpuMat buff = integralBuffer;
// generate integral for scale
gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR);
gpu::integralBuffered(src, sint, buff);
// calculate job
int totalWidth = level.workArea.width / step;
total += totalWidth * (level.workArea.height / step);
// go to next pyramide level
level = level.next(scaleFactor, image.size(), NxM, minObjectSize);
area = level.workArea;
step = (1 + (level.scale <= 2.f));
prev = acc;
acc += level.sFrame.width + 1;
}
2013-04-04 19:36:22 +08:00
cudev::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral);
}
if (groupThreshold <= 0 || objects.empty())
return 0;
cvCudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
2013-04-04 19:36:22 +08:00
cudev::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>());
cvCudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
cvCudaSafeCall( cudaDeviceSynchronize() );
return classified;
}
virtual cv::Size getClassifierCvSize() const { return NxM; }
bool read(const String& classifierAsXml)
{
FileStorage fs(classifierAsXml, FileStorage::READ);
return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false;
}
private:
void allocateBuffers(cv::Size frame)
{
if (frame == cv::Size())
return;
if (resuzeBuffer.empty() || frame.width > resuzeBuffer.cols || frame.height > resuzeBuffer.rows)
{
resuzeBuffer.create(frame, CV_8UC1);
integral.create(frame.height + 1, integralFactor * (frame.width + 1), CV_32SC1);
NcvSize32u roiSize;
roiSize.width = frame.width;
roiSize.height = frame.height;
cudaDeviceProp prop;
cvCudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );
Ncv32u bufSize;
ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
integralBuffer.create(1, bufSize, CV_8UC1);
candidates.create(1 , frame.width >> 1, CV_32SC4);
}
}
bool read(const FileNode &root)
{
const char *GPU_CC_STAGE_TYPE = "stageType";
const char *GPU_CC_FEATURE_TYPE = "featureType";
const char *GPU_CC_BOOST = "BOOST";
const char *GPU_CC_LBP = "LBP";
const char *GPU_CC_MAX_CAT_COUNT = "maxCatCount";
const char *GPU_CC_HEIGHT = "height";
const char *GPU_CC_WIDTH = "width";
const char *GPU_CC_STAGE_PARAMS = "stageParams";
const char *GPU_CC_MAX_DEPTH = "maxDepth";
const char *GPU_CC_FEATURE_PARAMS = "featureParams";
const char *GPU_CC_STAGES = "stages";
const char *GPU_CC_STAGE_THRESHOLD = "stageThreshold";
const float GPU_THRESHOLD_EPS = 1e-5f;
const char *GPU_CC_WEAK_CLASSIFIERS = "weakClassifiers";
const char *GPU_CC_INTERNAL_NODES = "internalNodes";
const char *GPU_CC_LEAF_VALUES = "leafValues";
const char *GPU_CC_FEATURES = "features";
const char *GPU_CC_RECT = "rect";
String stageTypeStr = (String)root[GPU_CC_STAGE_TYPE];
CV_Assert(stageTypeStr == GPU_CC_BOOST);
String featureTypeStr = (String)root[GPU_CC_FEATURE_TYPE];
CV_Assert(featureTypeStr == GPU_CC_LBP);
NxM.width = (int)root[GPU_CC_WIDTH];
NxM.height = (int)root[GPU_CC_HEIGHT];
CV_Assert( NxM.height > 0 && NxM.width > 0 );
isStumps = ((int)(root[GPU_CC_STAGE_PARAMS][GPU_CC_MAX_DEPTH]) == 1) ? true : false;
CV_Assert(isStumps);
FileNode fn = root[GPU_CC_FEATURE_PARAMS];
if (fn.empty())
return false;
ncategories = fn[GPU_CC_MAX_CAT_COUNT];
subsetSize = (ncategories + 31) / 32;
nodeStep = 3 + ( ncategories > 0 ? subsetSize : 1 );
fn = root[GPU_CC_STAGES];
if (fn.empty())
return false;
std::vector<Stage> stages;
stages.reserve(fn.size());
std::vector<int> cl_trees;
std::vector<int> cl_nodes;
std::vector<float> cl_leaves;
std::vector<int> subsets;
FileNodeIterator it = fn.begin(), it_end = fn.end();
for (size_t si = 0; it != it_end; si++, ++it )
{
FileNode fns = *it;
Stage st;
st.threshold = (float)fns[GPU_CC_STAGE_THRESHOLD] - GPU_THRESHOLD_EPS;
fns = fns[GPU_CC_WEAK_CLASSIFIERS];
if (fns.empty())
return false;
st.ntrees = (int)fns.size();
st.first = (int)cl_trees.size();
stages.push_back(st);// (int, int, float)
cl_trees.reserve(stages[si].first + stages[si].ntrees);
// weak trees
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
for ( ; it1 != it1_end; ++it1 )
{
FileNode fnw = *it1;
FileNode internalNodes = fnw[GPU_CC_INTERNAL_NODES];
FileNode leafValues = fnw[GPU_CC_LEAF_VALUES];
if ( internalNodes.empty() || leafValues.empty() )
return false;
int nodeCount = (int)internalNodes.size()/nodeStep;
cl_trees.push_back(nodeCount);
cl_nodes.reserve((cl_nodes.size() + nodeCount) * 3);
cl_leaves.reserve(cl_leaves.size() + leafValues.size());
if( subsetSize > 0 )
subsets.reserve(subsets.size() + nodeCount * subsetSize);
// nodes
FileNodeIterator iIt = internalNodes.begin(), iEnd = internalNodes.end();
for( ; iIt != iEnd; )
{
cl_nodes.push_back((int)*(iIt++));
cl_nodes.push_back((int)*(iIt++));
cl_nodes.push_back((int)*(iIt++));
if( subsetSize > 0 )
for( int j = 0; j < subsetSize; j++, ++iIt )
subsets.push_back((int)*iIt);
}
// leaves
iIt = leafValues.begin(), iEnd = leafValues.end();
for( ; iIt != iEnd; ++iIt )
cl_leaves.push_back((float)*iIt);
}
}
fn = root[GPU_CC_FEATURES];
if( fn.empty() )
return false;
std::vector<uchar> features;
features.reserve(fn.size() * 4);
FileNodeIterator f_it = fn.begin(), f_end = fn.end();
for (; f_it != f_end; ++f_it)
{
FileNode rect = (*f_it)[GPU_CC_RECT];
FileNodeIterator r_it = rect.begin();
features.push_back(saturate_cast<uchar>((int)*(r_it++)));
features.push_back(saturate_cast<uchar>((int)*(r_it++)));
features.push_back(saturate_cast<uchar>((int)*(r_it++)));
features.push_back(saturate_cast<uchar>((int)*(r_it++)));
}
// copy data structures on gpu
stage_mat.upload(cv::Mat(1, (int) (stages.size() * sizeof(Stage)), CV_8UC1, (uchar*)&(stages[0]) ));
trees_mat.upload(cv::Mat(cl_trees).reshape(1,1));
nodes_mat.upload(cv::Mat(cl_nodes).reshape(1,1));
leaves_mat.upload(cv::Mat(cl_leaves).reshape(1,1));
subsets_mat.upload(cv::Mat(subsets).reshape(1,1));
features_mat.upload(cv::Mat(features).reshape(4,1));
return true;
}
enum stage { BOOST = 0 };
enum feature { LBP = 1, HAAR = 2 };
static const stage stageType = BOOST;
static const feature featureType = LBP;
cv::Size NxM;
bool isStumps;
int ncategories;
int subsetSize;
int nodeStep;
// gpu representation of classifier
GpuMat stage_mat;
GpuMat trees_mat;
GpuMat nodes_mat;
GpuMat leaves_mat;
GpuMat subsets_mat;
GpuMat features_mat;
GpuMat integral;
GpuMat integralBuffer;
GpuMat resuzeBuffer;
GpuMat candidates;
static const int integralFactor = 4;
};
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()
: findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const String& filename)
: findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
2012-08-02 17:18:55 +08:00
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
{
return this->empty() ? Size() : impl->getClassifierCvSize();
}
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
{
CV_Assert( !this->empty());
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size());
}
2012-08-02 17:18:55 +08:00
2013-02-21 20:12:33 +08:00
int cv::gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors)
{
CV_Assert( !this->empty());
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize);
}
bool cv::gpu::CascadeClassifier_GPU::load(const String& filename)
{
release();
String fext = filename.substr(filename.find_last_of(".") + 1);
2013-03-27 17:07:58 +08:00
fext = fext.toLowerCase();
if (fext == "nvbin")
2012-08-02 17:18:55 +08:00
{
impl = new HaarCascade();
return impl->read(filename);
2012-08-02 17:18:55 +08:00
}
FileStorage fs(filename, FileStorage::READ);
2012-08-02 17:18:55 +08:00
if (!fs.isOpened())
2012-08-02 17:18:55 +08:00
{
impl = new HaarCascade();
return impl->read(filename);
2012-08-02 17:18:55 +08:00
}
const char *GPU_CC_LBP = "LBP";
String featureTypeStr = (String)fs.getFirstTopLevelNode()["featureType"];
if (featureTypeStr == GPU_CC_LBP)
impl = new LbpCascade();
else
impl = new HaarCascade();
2012-08-02 17:18:55 +08:00
impl->read(filename);
return !this->empty();
2012-08-02 17:18:55 +08:00
}
2012-09-27 22:11:06 +08:00
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////////
2012-08-02 17:18:55 +08:00
2012-09-27 22:11:06 +08:00
#if defined (HAVE_CUDA)
2012-08-02 17:18:55 +08:00
struct RectConvert
{
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
NcvRect32u operator()(const Rect& nr) const
{
NcvRect32u rect;
rect.x = nr.x;
rect.y = nr.y;
rect.width = nr.width;
rect.height = nr.height;
return rect;
}
};
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
std::vector<Rect> rects(hypotheses.size());
2012-08-02 17:18:55 +08:00
std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());
if (weights)
{
std::vector<int> weights_int;
2012-08-02 17:18:55 +08:00
weights_int.assign(weights->begin(), weights->end());
cv::groupRectangles(rects, weights_int, groupThreshold, eps);
}
else
{
cv::groupRectangles(rects, groupThreshold, eps);
}
std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
hypotheses.resize(rects.size());
}
NCVStatus loadFromXML(const String &filename,
2012-08-02 17:18:55 +08:00
HaarClassifierCascadeDescriptor &haar,
std::vector<HaarStage64> &haarStages,
std::vector<HaarClassifierNode128> &haarClassifierNodes,
std::vector<HaarFeature64> &haarFeatures)
{
NCVStatus ncvStat;
haar.NumStages = 0;
haar.NumClassifierRootNodes = 0;
haar.NumClassifierTotalNodes = 0;
haar.NumFeatures = 0;
haar.ClassifierSize.width = 0;
haar.ClassifierSize.height = 0;
haar.bHasStumpsOnly = true;
haar.bNeedsTiltedII = false;
Ncv32u curMaxTreeDepth;
2013-02-21 20:12:33 +08:00
std::vector<char> xmlFileCont;
2012-08-02 17:18:55 +08:00
std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
haarStages.resize(0);
haarClassifierNodes.resize(0);
haarFeatures.resize(0);
Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
if (oldCascade.empty())
{
return NCV_HAAR_XML_LOADING_EXCEPTION;
}
haar.ClassifierSize.width = oldCascade->orig_window_size.width;
haar.ClassifierSize.height = oldCascade->orig_window_size.height;
int stagesCound = oldCascade->count;
for(int s = 0; s < stagesCound; ++s) // by stages
{
HaarStage64 curStage;
curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size()));
curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);
int treesCount = oldCascade->stage_classifier[s].count;
for(int t = 0; t < treesCount; ++t) // by trees
{
Ncv32u nodeId = 0;
CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];
int nodesCount = tree->count;
for(int n = 0; n < nodesCount; ++n) //by features
{
CvHaarFeature* feature = &tree->haar_feature[n];
HaarClassifierNode128 curNode;
curNode.setThreshold(tree->threshold[n]);
NcvBool bIsLeftNodeLeaf = false;
NcvBool bIsRightNodeLeaf = false;
HaarClassifierNodeDescriptor32 nodeLeft;
if ( tree->left[n] <= 0 )
{
Ncv32f leftVal = tree->alpha[-tree->left[n]];
ncvStat = nodeLeft.create(leftVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
bIsLeftNodeLeaf = true;
}
else
{
Ncv32u leftNodeOffset = tree->left[n];
nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
haar.bHasStumpsOnly = false;
}
curNode.setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight;
if ( tree->right[n] <= 0 )
{
Ncv32f rightVal = tree->alpha[-tree->right[n]];
ncvStat = nodeRight.create(rightVal);
ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
bIsRightNodeLeaf = true;
}
else
{
Ncv32u rightNodeOffset = tree->right[n];
nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
haar.bHasStumpsOnly = false;
}
curNode.setRightNodeDesc(nodeRight);
Ncv32u tiltedVal = feature->tilted;
haar.bNeedsTiltedII = (tiltedVal != 0);
Ncv32u featureId = 0;
for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
{
Ncv32u rectX = feature->rect[l].r.x;
Ncv32u rectY = feature->rect[l].r.y;
Ncv32u rectWidth = feature->rect[l].r.width;
Ncv32u rectHeight = feature->rect[l].r.height;
Ncv32f rectWeight = feature->rect[l].weight;
if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
break;
HaarFeature64 curFeature;
ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
curFeature.setWeight(rectWeight);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
haarFeatures.push_back(curFeature);
featureId++;
}
HaarFeatureDescriptor32 tmpFeatureDesc;
ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId);
ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
curNode.setFeatureDesc(tmpFeatureDesc);
if (!nodeId)
{
//root node
haarClassifierNodes.push_back(curNode);
curMaxTreeDepth = 1;
}
else
{
//other node
h_TmpClassifierNotRootNodes.push_back(curNode);
curMaxTreeDepth++;
}
nodeId++;
}
}
curStage.setNumClassifierRootNodes(treesCount);
haarStages.push_back(curStage);
}
//fill in cascade stats
haar.NumStages = static_cast<Ncv32u>(haarStages.size());
haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size());
haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size());
haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size());
//merge root and leaf nodes in one classifiers array
Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size());
for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
{
HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();
HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
if (!featureDesc.isLeftNodeLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
if (!featureDesc.isRightNodeLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
haarClassifierNodes[i].setRightNodeDesc(nodeRight);
}
for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
{
HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();
HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
if (!featureDesc.isLeftNodeLeaf())
{
Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
nodeLeft.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);
HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
if (!featureDesc.isRightNodeLeaf())
{
Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
nodeRight.create(newOffset);
}
h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);
haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
}
return NCV_SUCCESS;
}
#endif /* HAVE_CUDA */