mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
fast_nlm initial version
This commit is contained in:
parent
2446c9329f
commit
4b5bbb7752
@ -40,7 +40,6 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
@ -342,5 +341,3 @@ namespace cv { namespace gpu { namespace device
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
}}} // namespace cv { namespace gpu { namespace device
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
@ -94,7 +94,7 @@ namespace
|
||||
|
||||
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
|
||||
{
|
||||
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
|
||||
#else
|
||||
(void)feature_set;
|
||||
@ -109,7 +109,7 @@ bool cv::gpu::TargetArchs::has(int major, int minor)
|
||||
|
||||
bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
|
||||
{
|
||||
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
@ -120,7 +120,7 @@ bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
|
||||
|
||||
bool cv::gpu::TargetArchs::hasBin(int major, int minor)
|
||||
{
|
||||
#if defined (HAVE_CUDA) && !defined(CUDA_DISABLER)
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
|
||||
#else
|
||||
(void)major;
|
||||
@ -131,7 +131,7 @@ bool cv::gpu::TargetArchs::hasBin(int major, int minor)
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
|
||||
{
|
||||
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::less_equal<int>());
|
||||
#else
|
||||
@ -149,9 +149,8 @@ bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
|
||||
{
|
||||
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::greater_equal<int>());
|
||||
#else
|
||||
(void)major;
|
||||
(void)minor;
|
||||
@ -161,7 +160,7 @@ bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
|
||||
|
||||
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
|
||||
{
|
||||
#if defined HAVE_CUDA && !defined(CUDA_DISABLER)
|
||||
#if defined (HAVE_CUDA)
|
||||
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
|
||||
std::greater_equal<int>());
|
||||
#else
|
||||
@ -171,7 +170,7 @@ bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
|
||||
#endif
|
||||
}
|
||||
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
|
||||
|
||||
@ -728,7 +727,7 @@ namespace
|
||||
};
|
||||
}
|
||||
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER_)
|
||||
|
||||
namespace
|
||||
{
|
||||
|
@ -3,7 +3,7 @@ if(ANDROID OR IOS)
|
||||
endif()
|
||||
|
||||
set(the_description "GPU-accelerated Computer Vision")
|
||||
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video opencv_nonfree opencv_legacy)
|
||||
ocv_add_module(gpu opencv_imgproc opencv_calib3d opencv_objdetect opencv_video opencv_nonfree opencv_photo opencv_legacy)
|
||||
|
||||
ocv_module_include_directories("${CMAKE_CURRENT_SOURCE_DIR}/src/cuda" "${CMAKE_CURRENT_SOURCE_DIR}/../highgui/src")
|
||||
|
||||
|
@ -851,7 +851,7 @@ Performs pure non local means denoising without any simplification, and thus it
|
||||
|
||||
.. ocv:function:: void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null())
|
||||
|
||||
:param src: Source image. Supports only CV_8UC1, CV_8UC3.
|
||||
:param src: Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.
|
||||
|
||||
:param dst: Destination imagwe.
|
||||
|
||||
|
@ -777,6 +777,8 @@ CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size,
|
||||
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h,
|
||||
int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
|
||||
|
||||
//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
|
||||
CV_EXPORTS void fastNlMeansDenoising( const GpuMat& src, GpuMat& dst, float h, int search_radius = 10, int block_radius = 3, Stream& s = Stream::Null());
|
||||
|
||||
struct CV_EXPORTS CannyBuf;
|
||||
|
||||
|
@ -95,4 +95,51 @@ PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans,
|
||||
{
|
||||
FAIL();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// fastNonLocalMeans
|
||||
|
||||
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth , int, int, int);
|
||||
|
||||
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_FastNonLocalMeans,
|
||||
Combine(GPU_TYPICAL_MAT_SIZES, Values<MatDepth>(CV_8U), Values(1), Values(21), Values(5, 7)))
|
||||
{
|
||||
declare.time(30.0);
|
||||
|
||||
cv::Size size = GET_PARAM(0);
|
||||
int depth = GET_PARAM(1);
|
||||
int channels = GET_PARAM(2);
|
||||
|
||||
int search_widow_size = GET_PARAM(3);
|
||||
int block_size = GET_PARAM(4);
|
||||
|
||||
float h = 10;
|
||||
int type = CV_MAKE_TYPE(depth, channels);
|
||||
|
||||
cv::Mat src(size, type);
|
||||
fillRandom(src);
|
||||
|
||||
if (runOnGpu)
|
||||
{
|
||||
cv::gpu::GpuMat d_src(src);
|
||||
cv::gpu::GpuMat d_dst;
|
||||
cv::gpu::fastNlMeansDenoising(d_src, d_dst, h, search_widow_size/2, block_size/2);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cv::gpu::fastNlMeansDenoising(d_src, d_dst, h, search_widow_size/2, block_size/2);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat dst;
|
||||
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
||||
}
|
||||
}
|
||||
}
|
@ -26,6 +26,7 @@
|
||||
#include "opencv2/video/video.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/legacy/legacy.hpp"
|
||||
#include "opencv2/photo/photo.hpp"
|
||||
|
||||
#include "utility.hpp"
|
||||
|
||||
|
@ -721,8 +721,12 @@ bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
|
||||
return !this->empty();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if defined (HAVE_CUDA)
|
||||
|
||||
struct RectConvert
|
||||
{
|
||||
Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
|
||||
|
@ -47,6 +47,7 @@
|
||||
|
||||
#include "opencv2/gpu/device/vec_traits.hpp"
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
#include "opencv2/gpu/device/block.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
@ -167,8 +168,303 @@ namespace cv { namespace gpu { namespace device
|
||||
}
|
||||
|
||||
template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
||||
template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
||||
template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
||||
}
|
||||
}}}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//// Non Local Means Denosing (fast approximate version)
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace imgproc
|
||||
{
|
||||
__device__ __forceinline__ int calcDist(const uchar& a, const uchar& b) { return (a-b)*(a-b); }
|
||||
__device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); }
|
||||
__device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); }
|
||||
|
||||
|
||||
|
||||
template <class T> struct FastNonLocalMenas
|
||||
{
|
||||
enum
|
||||
{
|
||||
CTA_SIZE = 256,
|
||||
|
||||
//TILE_COLS = 256,
|
||||
//TILE_ROWS = 32,
|
||||
|
||||
TILE_COLS = 256,
|
||||
TILE_ROWS = 32,
|
||||
|
||||
STRIDE = CTA_SIZE
|
||||
};
|
||||
|
||||
struct plus
|
||||
{
|
||||
__device__ __forceinline float operator()(float v1, float v2) const { return v1 + v2; }
|
||||
};
|
||||
|
||||
int search_radius;
|
||||
int block_radius;
|
||||
|
||||
int search_window;
|
||||
int block_window;
|
||||
float minus_h2_inv;
|
||||
|
||||
FastNonLocalMenas(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2),
|
||||
search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {}
|
||||
|
||||
PtrStep<T> src;
|
||||
mutable PtrStepi buffer;
|
||||
|
||||
__device__ __forceinline__ void initSums_TileFistColumn(int i, int j, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
||||
{
|
||||
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
||||
{
|
||||
dist_sums[index] = 0;
|
||||
|
||||
for(int tx = 0; tx < block_window; ++tx)
|
||||
col_dist_sums(tx, index) = 0;
|
||||
|
||||
int y = index / search_window;
|
||||
int x = index - y * search_window;
|
||||
|
||||
int ay = i;
|
||||
int ax = j;
|
||||
|
||||
int by = i + y - search_radius;
|
||||
int bx = j + x - search_radius;
|
||||
|
||||
#if 1
|
||||
for (int tx = -block_radius; tx <= block_radius; ++tx)
|
||||
{
|
||||
int col_dist_sums_tx_block_radius_index = 0;
|
||||
|
||||
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
||||
{
|
||||
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
|
||||
|
||||
dist_sums[index] += dist;
|
||||
col_dist_sums_tx_block_radius_index += dist;
|
||||
}
|
||||
|
||||
col_dist_sums(tx + block_radius, index) = col_dist_sums_tx_block_radius_index;
|
||||
}
|
||||
#else
|
||||
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
||||
for (int tx = -block_radius; tx <= block_radius; ++tx)
|
||||
{
|
||||
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
|
||||
|
||||
dist_sums[index] += dist;
|
||||
col_dist_sums(tx + block_radius, index) += dist;
|
||||
}
|
||||
#endif
|
||||
|
||||
up_col_dist_sums(j, index) = col_dist_sums(block_window - 1, index);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void shiftLeftSums_TileFirstRow(int i, int j, int first_col, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
||||
{
|
||||
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
||||
{
|
||||
int y = index / search_window;
|
||||
int x = index - y * search_window;
|
||||
|
||||
int ay = i;
|
||||
int ax = j + block_radius;
|
||||
|
||||
int by = i + y - search_radius;
|
||||
int bx = j + x - search_radius + block_radius;
|
||||
|
||||
int col_dist_sum = 0;
|
||||
|
||||
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
||||
col_dist_sum += calcDist(src(ay + ty, ax), src(by + ty, bx));
|
||||
|
||||
int old_dist_sums = dist_sums[index];
|
||||
int old_col_sum = col_dist_sums(first_col, index);
|
||||
dist_sums[index] += col_dist_sum - old_col_sum;
|
||||
|
||||
|
||||
col_dist_sums(first_col, index) = col_dist_sum;
|
||||
up_col_dist_sums(j, index) = col_dist_sum;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void shiftLeftSums_UsingUpSums(int i, int j, int first_col, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
||||
{
|
||||
int ay = i;
|
||||
int ax = j + block_radius;
|
||||
|
||||
int start_by = i - search_radius;
|
||||
int start_bx = j - search_radius + block_radius;
|
||||
|
||||
T a_up = src(ay - block_radius - 1, ax);
|
||||
T a_down = src(ay + block_radius, ax);
|
||||
|
||||
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
||||
{
|
||||
dist_sums[index] -= col_dist_sums(first_col, index);
|
||||
|
||||
int y = index / search_window;
|
||||
int x = index - y * search_window;
|
||||
|
||||
int by = start_by + y;
|
||||
int bx = start_bx + x;
|
||||
|
||||
T b_up = src(by - block_radius - 1, bx);
|
||||
T b_down = src(by + block_radius, bx);
|
||||
|
||||
int col_dist_sums_first_col_index = up_col_dist_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
|
||||
|
||||
col_dist_sums(first_col, index) = col_dist_sums_first_col_index;
|
||||
dist_sums[index] += col_dist_sums_first_col_index;
|
||||
up_col_dist_sums(j, index) = col_dist_sums_first_col_index;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void convolve_search_window(int i, int j, const int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums, T& dst) const
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type;
|
||||
|
||||
float weights_sum = 0;
|
||||
sum_type sum = VecTraits<sum_type>::all(0);
|
||||
|
||||
float bw2_inv = 1.f/(block_window * block_window);
|
||||
|
||||
int start_x = j - search_radius;
|
||||
int start_y = i - search_radius;
|
||||
|
||||
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
||||
{
|
||||
int y = index / search_window;
|
||||
int x = index - y * search_window;
|
||||
|
||||
float avg_dist = dist_sums[index] * bw2_inv;
|
||||
float weight = __expf(avg_dist * minus_h2_inv);
|
||||
weights_sum += weight;
|
||||
|
||||
sum = sum + weight * saturate_cast<sum_type>(src(start_y + y, start_x + x));
|
||||
}
|
||||
|
||||
volatile __shared__ float cta_buffer[CTA_SIZE];
|
||||
|
||||
int tid = threadIdx.x;
|
||||
|
||||
cta_buffer[tid] = weights_sum;
|
||||
__syncthreads();
|
||||
Block::reduce<CTA_SIZE>(cta_buffer, plus());
|
||||
|
||||
if (tid == 0)
|
||||
weights_sum = cta_buffer[0];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for(int n = 0; n < VecTraits<T>::cn; ++n)
|
||||
{
|
||||
cta_buffer[tid] = reinterpret_cast<float*>(&sum)[n];
|
||||
__syncthreads();
|
||||
Block::reduce<CTA_SIZE>(cta_buffer, plus());
|
||||
|
||||
if (tid == 0)
|
||||
reinterpret_cast<float*>(&sum)[n] = cta_buffer[0];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (tid == 0)
|
||||
dst = saturate_cast<T>(sum/weights_sum);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const
|
||||
{
|
||||
int tbx = blockIdx.x * TILE_COLS;
|
||||
int tby = blockIdx.y * TILE_ROWS;
|
||||
|
||||
int tex = ::min(tbx + TILE_COLS, dst.cols);
|
||||
int tey = ::min(tby + TILE_ROWS, dst.rows);
|
||||
|
||||
PtrStepi col_dist_sums;
|
||||
col_dist_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
|
||||
col_dist_sums.step = buffer.step;
|
||||
|
||||
PtrStepi up_col_dist_sums;
|
||||
up_col_dist_sums.data = buffer.data + blockIdx.y * search_window * search_window;
|
||||
up_col_dist_sums.step = buffer.step;
|
||||
|
||||
extern __shared__ int dist_sums[]; //search_window * search_window
|
||||
|
||||
int first_col = -1;
|
||||
|
||||
for (int i = tby; i < tey; ++i)
|
||||
for (int j = tbx; j < tex; ++j)
|
||||
{
|
||||
__syncthreads();
|
||||
|
||||
if (j == tbx)
|
||||
{
|
||||
initSums_TileFistColumn(i, j, dist_sums, col_dist_sums, up_col_dist_sums);
|
||||
first_col = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (i == tby)
|
||||
shiftLeftSums_TileFirstRow(i, j, first_col, dist_sums, col_dist_sums, up_col_dist_sums);
|
||||
else
|
||||
shiftLeftSums_UsingUpSums(i, j, first_col, dist_sums, col_dist_sums, up_col_dist_sums);
|
||||
|
||||
first_col = (first_col + 1) % block_window;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
convolve_search_window(i, j, dist_sums, col_dist_sums, up_col_dist_sums, dst(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
__global__ void fast_nlm_kernel(const FastNonLocalMenas<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); }
|
||||
|
||||
void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
|
||||
{
|
||||
typedef FastNonLocalMenas<uchar> FNLM;
|
||||
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
|
||||
|
||||
buffer_cols = search_window * search_window * grid.y;
|
||||
buffer_rows = src.cols + block_window * grid.x;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
|
||||
int search_window, int block_window, float h, cudaStream_t stream)
|
||||
{
|
||||
typedef FastNonLocalMenas<T> FNLM;
|
||||
FNLM fnlm(search_window, block_window, h);
|
||||
|
||||
fnlm.src = (PtrStepSz<T>)src;
|
||||
fnlm.buffer = buffer;
|
||||
|
||||
dim3 block(FNLM::CTA_SIZE, 1);
|
||||
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
|
||||
int smem = search_window * search_window * sizeof(int);
|
||||
|
||||
|
||||
fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst);
|
||||
cudaSafeCall ( cudaGetLastError () );
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
||||
template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
||||
template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
||||
}
|
||||
}}}
|
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
@ -64,7 +64,7 @@ CV_EXPORTS cudaStream_t cv::gpu::StreamAccessor::getStream(const Stream& stream)
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
void cv::gpu::Stream::create() { throw_nogpu(); }
|
||||
void cv::gpu::Stream::release() { throw_nogpu(); }
|
||||
|
@ -49,9 +49,12 @@ using namespace cv::gpu;
|
||||
|
||||
void cv::gpu::bilateralFilter(const GpuMat&, GpuMat&, int, float, float, int, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::nonLocalMeans(const GpuMat&, GpuMat&, float, int, int, int, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::fastNlMeansDenoising( const GpuMat&, GpuMat&, float, int, int, Stream&) { throw_nogpu(); }
|
||||
|
||||
#else
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//// Non Local Means Denosing (brute force)
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
@ -106,9 +109,9 @@ void cv::gpu::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_
|
||||
using cv::gpu::device::imgproc::nlm_bruteforce_gpu;
|
||||
typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);
|
||||
|
||||
static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, 0 /*nlm_bruteforce_gpu<uchar2>*/ , nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ };
|
||||
static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ };
|
||||
|
||||
CV_Assert(src.type() == CV_8U || src.type() == CV_8UC3);
|
||||
CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3);
|
||||
|
||||
const func_t func = funcs[src.channels() - 1];
|
||||
CV_Assert(func != 0);
|
||||
@ -127,10 +130,235 @@ void cv::gpu::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//// Non Local Means Denosing (fast approxinate)
|
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace imgproc
|
||||
{
|
||||
void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows);
|
||||
|
||||
template<typename T>
|
||||
void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
|
||||
int search_window, int block_window, float h, cudaStream_t stream);
|
||||
|
||||
}
|
||||
}}}
|
||||
|
||||
|
||||
|
||||
//class CV_EXPORTS FastNonLocalMeansDenoising
|
||||
//{
|
||||
//public:
|
||||
// FastNonLocalMeansDenoising(float h, int search_radius, int block_radius, const Size& image_size = Size())
|
||||
// {
|
||||
// if (size.area() != 0)
|
||||
// allocate_buffers(image_size);
|
||||
// }
|
||||
|
||||
// void operator()(const GpuMat& src, GpuMat& dst);
|
||||
|
||||
//private:
|
||||
// void allocate_buffers(const Size& image_size)
|
||||
// {
|
||||
// col_dist_sums.create(block_window_, search_window_ * search_window_, CV_32S);
|
||||
// up_col_dist_sums.create(image_size.width, search_window_ * search_window_, CV_32S);
|
||||
// }
|
||||
|
||||
// int search_radius_;
|
||||
// int block_radius;
|
||||
// GpuMat col_dist_sums_;
|
||||
// GpuMat up_col_dist_sums_;
|
||||
//};
|
||||
|
||||
void cv::gpu::fastNlMeansDenoising( const GpuMat& src, GpuMat& dst, float h, int search_radius, int block_radius, Stream& s)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
CV_Assert(src.depth() == CV_8U && src.channels() < 4);
|
||||
|
||||
GpuMat extended_src, src_hdr;
|
||||
int border_size = search_radius + block_radius;
|
||||
cv::gpu::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), s);
|
||||
src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size()));
|
||||
|
||||
using namespace cv::gpu::device::imgproc;
|
||||
typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
||||
static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0 };
|
||||
|
||||
int search_window = 2 * search_radius + 1;
|
||||
int block_window = 2 * block_radius + 1;
|
||||
|
||||
int bcols, brows;
|
||||
nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows);
|
||||
|
||||
//GpuMat col_dist_sums(block_window * gx, search_window * search_window * gy, CV_32S);
|
||||
//GpuMat up_col_dist_sums(src.cols, search_window * search_window * gy, CV_32S);
|
||||
GpuMat buffer(brows, bcols, CV_32S);
|
||||
|
||||
funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(s));
|
||||
}
|
||||
|
||||
//void cv::gpu::fastNlMeansDenoisingColored( const GpuMat& src, GpuMat& dst, float h, float hForColorComponents, int templateWindowSize, int searchWindowSize)
|
||||
//{
|
||||
// Mat src = _src.getMat();
|
||||
// _dst.create(src.size(), src.type());
|
||||
// Mat dst = _dst.getMat();
|
||||
|
||||
// if (src.type() != CV_8UC3) {
|
||||
// CV_Error(CV_StsBadArg, "Type of input image should be CV_8UC3!");
|
||||
// return;
|
||||
// }
|
||||
|
||||
// Mat src_lab;
|
||||
// cvtColor(src, src_lab, CV_LBGR2Lab);
|
||||
|
||||
// Mat l(src.size(), CV_8U);
|
||||
// Mat ab(src.size(), CV_8UC2);
|
||||
// Mat l_ab[] = { l, ab };
|
||||
// int from_to[] = { 0,0, 1,1, 2,2 };
|
||||
// mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);
|
||||
|
||||
// fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
|
||||
// fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);
|
||||
|
||||
// Mat l_ab_denoised[] = { l, ab };
|
||||
// Mat dst_lab(src.size(), src.type());
|
||||
// mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
||||
|
||||
// cvtColor(dst_lab, dst, CV_Lab2LBGR);
|
||||
//}
|
||||
|
||||
//static void fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
// const std::vector<Mat>& srcImgs,
|
||||
// int imgToDenoiseIndex, int temporalWindowSize,
|
||||
// int templateWindowSize, int searchWindowSize)
|
||||
//{
|
||||
// int src_imgs_size = (int)srcImgs.size();
|
||||
// if (src_imgs_size == 0) {
|
||||
// CV_Error(CV_StsBadArg, "Input images vector should not be empty!");
|
||||
// }
|
||||
|
||||
// if (temporalWindowSize % 2 == 0 ||
|
||||
// searchWindowSize % 2 == 0 ||
|
||||
// templateWindowSize % 2 == 0) {
|
||||
// CV_Error(CV_StsBadArg, "All windows sizes should be odd!");
|
||||
// }
|
||||
|
||||
// int temporalWindowHalfSize = temporalWindowSize / 2;
|
||||
// if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
|
||||
// imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
|
||||
// {
|
||||
// CV_Error(CV_StsBadArg,
|
||||
// "imgToDenoiseIndex and temporalWindowSize "
|
||||
// "should be choosen corresponding srcImgs size!");
|
||||
// }
|
||||
|
||||
// for (int i = 1; i < src_imgs_size; i++) {
|
||||
// if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
|
||||
// CV_Error(CV_StsBadArg, "Input images should have the same size and type!");
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
//void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
// int imgToDenoiseIndex, int temporalWindowSize,
|
||||
// float h, int templateWindowSize, int searchWindowSize)
|
||||
//{
|
||||
// vector<Mat> srcImgs;
|
||||
// _srcImgs.getMatVector(srcImgs);
|
||||
|
||||
// fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
// srcImgs, imgToDenoiseIndex,
|
||||
// temporalWindowSize, templateWindowSize, searchWindowSize
|
||||
// );
|
||||
// _dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
// Mat dst = _dst.getMat();
|
||||
|
||||
// switch (srcImgs[0].type()) {
|
||||
// case CV_8U:
|
||||
// parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
|
||||
// FastNlMeansMultiDenoisingInvoker<uchar>(
|
||||
// srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
// dst, templateWindowSize, searchWindowSize, h));
|
||||
// break;
|
||||
// case CV_8UC2:
|
||||
// parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
|
||||
// FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
|
||||
// srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
// dst, templateWindowSize, searchWindowSize, h));
|
||||
// break;
|
||||
// case CV_8UC3:
|
||||
// parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
|
||||
// FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
|
||||
// srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
||||
// dst, templateWindowSize, searchWindowSize, h));
|
||||
// break;
|
||||
// default:
|
||||
// CV_Error(CV_StsBadArg,
|
||||
// "Unsupported matrix format! Only uchar, Vec2b, Vec3b are supported");
|
||||
// }
|
||||
//}
|
||||
|
||||
//void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
||||
// int imgToDenoiseIndex, int temporalWindowSize,
|
||||
// float h, float hForColorComponents,
|
||||
// int templateWindowSize, int searchWindowSize)
|
||||
//{
|
||||
// vector<Mat> srcImgs;
|
||||
// _srcImgs.getMatVector(srcImgs);
|
||||
|
||||
// fastNlMeansDenoisingMultiCheckPreconditions(
|
||||
// srcImgs, imgToDenoiseIndex,
|
||||
// temporalWindowSize, templateWindowSize, searchWindowSize
|
||||
// );
|
||||
|
||||
// _dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||
// Mat dst = _dst.getMat();
|
||||
|
||||
// int src_imgs_size = (int)srcImgs.size();
|
||||
|
||||
// if (srcImgs[0].type() != CV_8UC3) {
|
||||
// CV_Error(CV_StsBadArg, "Type of input images should be CV_8UC3!");
|
||||
// return;
|
||||
// }
|
||||
|
||||
// int from_to[] = { 0,0, 1,1, 2,2 };
|
||||
|
||||
// // TODO convert only required images
|
||||
// vector<Mat> src_lab(src_imgs_size);
|
||||
// vector<Mat> l(src_imgs_size);
|
||||
// vector<Mat> ab(src_imgs_size);
|
||||
// for (int i = 0; i < src_imgs_size; i++) {
|
||||
// src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
|
||||
// l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
|
||||
// ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);
|
||||
// cvtColor(srcImgs[i], src_lab[i], CV_LBGR2Lab);
|
||||
|
||||
// Mat l_ab[] = { l[i], ab[i] };
|
||||
// mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
|
||||
// }
|
||||
|
||||
// Mat dst_l;
|
||||
// Mat dst_ab;
|
||||
|
||||
// fastNlMeansDenoisingMulti(
|
||||
// l, dst_l, imgToDenoiseIndex, temporalWindowSize,
|
||||
// h, templateWindowSize, searchWindowSize);
|
||||
|
||||
// fastNlMeansDenoisingMulti(
|
||||
// ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
|
||||
// hForColorComponents, templateWindowSize, searchWindowSize);
|
||||
|
||||
// Mat l_ab_denoised[] = { dst_l, dst_ab };
|
||||
// Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
|
||||
// mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
||||
|
||||
// cvtColor(dst_lab, dst, CV_Lab2LBGR);
|
||||
//}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -1110,31 +1110,6 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType)
|
||||
{
|
||||
switch (cpuBorderType)
|
||||
{
|
||||
case cv::BORDER_REFLECT101:
|
||||
gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU;
|
||||
return true;
|
||||
case cv::BORDER_REPLICATE:
|
||||
gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU;
|
||||
return true;
|
||||
case cv::BORDER_CONSTANT:
|
||||
gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU;
|
||||
return true;
|
||||
case cv::BORDER_REFLECT:
|
||||
gpuBorderType = cv::gpu::BORDER_REFLECT_GPU;
|
||||
return true;
|
||||
case cv::BORDER_WRAP:
|
||||
gpuBorderType = cv::gpu::BORDER_WRAP_GPU;
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
};
|
||||
return false;
|
||||
}
|
||||
|
||||
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType)
|
||||
{
|
||||
GpuMat Dx, Dy;
|
||||
|
@ -39,8 +39,6 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
@ -77,6 +75,8 @@ void ncvSetDebugOutputHandler(NCVDebugOutputHandler *func)
|
||||
debugOutputHandler = func;
|
||||
}
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
|
205
modules/gpu/src/opencv2/gpu/device/block.hpp
Normal file
205
modules/gpu/src/opencv2/gpu/device/block.hpp
Normal file
@ -0,0 +1,205 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_GPU_DEVICE_BLOCK_HPP__
|
||||
#define __OPENCV_GPU_DEVICE_BLOCK_HPP__
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
struct Block
|
||||
{
|
||||
static __device__ __forceinline__ unsigned int id()
|
||||
{
|
||||
return blockIdx.x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ unsigned int stride()
|
||||
{
|
||||
return blockDim.x * blockDim.y * blockDim.z;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void sync()
|
||||
{
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int flattenedThreadId()
|
||||
{
|
||||
return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
|
||||
}
|
||||
|
||||
template<typename It, typename T>
|
||||
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
It t = beg + flattenedThreadId();
|
||||
|
||||
for(; t < end; t += STRIDE)
|
||||
*t = value;
|
||||
}
|
||||
|
||||
template<typename OutIt, typename T>
|
||||
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
int tid = flattenedThreadId();
|
||||
value += tid;
|
||||
|
||||
for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
|
||||
*t = value;
|
||||
}
|
||||
|
||||
template<typename InIt, typename OutIt>
|
||||
static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
InIt t = beg + flattenedThreadId();
|
||||
OutIt o = out + (t - beg);
|
||||
|
||||
for(; t < end; t += STRIDE, o += STRIDE)
|
||||
*o = *t;
|
||||
}
|
||||
|
||||
template<typename InIt, typename OutIt, class UnOp>
|
||||
static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
InIt t = beg + flattenedThreadId();
|
||||
OutIt o = out + (t - beg);
|
||||
|
||||
for(; t < end; t += STRIDE, o += STRIDE)
|
||||
*o = op(*t);
|
||||
}
|
||||
|
||||
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
|
||||
static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
|
||||
{
|
||||
int STRIDE = stride();
|
||||
InIt1 t1 = beg1 + flattenedThreadId();
|
||||
InIt2 t2 = beg2 + flattenedThreadId();
|
||||
OutIt o = out + (t1 - beg1);
|
||||
|
||||
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
|
||||
*o = op(*t1, *t2);
|
||||
}
|
||||
|
||||
template<int CTA_SIZE, typename T, class BinOp>
|
||||
static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
|
||||
{
|
||||
int tid = flattenedThreadId();
|
||||
T val = buffer[tid];
|
||||
|
||||
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
|
||||
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
|
||||
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
|
||||
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
|
||||
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
|
||||
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
|
||||
}
|
||||
}
|
||||
|
||||
template<int CTA_SIZE, typename T, class BinOp>
|
||||
static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
|
||||
{
|
||||
int tid = flattenedThreadId();
|
||||
T val = buffer[tid] = init;
|
||||
__syncthreads();
|
||||
|
||||
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
|
||||
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
|
||||
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
|
||||
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
|
||||
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
|
||||
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
|
||||
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
|
||||
}
|
||||
__syncthreads();
|
||||
return buffer[0];
|
||||
}
|
||||
|
||||
template <typename T, class BinOp>
|
||||
static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
|
||||
{
|
||||
int ftid = flattenedThreadId();
|
||||
int sft = stride();
|
||||
|
||||
if (sft < n)
|
||||
{
|
||||
for (unsigned int i = sft + ftid; i < n; i += sft)
|
||||
data[ftid] = op(data[ftid], data[i]);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
n = sft;
|
||||
}
|
||||
|
||||
while (n > 1)
|
||||
{
|
||||
unsigned int half = n/2;
|
||||
|
||||
if (ftid < half)
|
||||
data[ftid] = op(data[ftid], data[n - ftid - 1]);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
n = n - half;
|
||||
}
|
||||
}
|
||||
};
|
||||
}}}
|
||||
|
||||
#endif /* __OPENCV_GPU_DEVICE_BLOCK_HPP__ */
|
||||
|
||||
|
@ -41,4 +41,34 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
/* End of file. */
|
||||
|
||||
|
||||
bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType)
|
||||
{
|
||||
switch (cpuBorderType)
|
||||
{
|
||||
case cv::BORDER_REFLECT101:
|
||||
gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU;
|
||||
return true;
|
||||
case cv::BORDER_REPLICATE:
|
||||
gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU;
|
||||
return true;
|
||||
case cv::BORDER_CONSTANT:
|
||||
gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU;
|
||||
return true;
|
||||
case cv::BORDER_REFLECT:
|
||||
gpuBorderType = cv::gpu::BORDER_REFLECT_GPU;
|
||||
return true;
|
||||
case cv::BORDER_WRAP:
|
||||
gpuBorderType = cv::gpu::BORDER_WRAP_GPU;
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
};
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* End of file. */
|
||||
|
||||
|
@ -96,7 +96,7 @@ INSTANTIATE_TEST_CASE_P(GPU_Denoising, BilateralFilter, testing::Combine(
|
||||
////////////////////////////////////////////////////////
|
||||
// Brute Force Non local means
|
||||
|
||||
struct NonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
struct BruteForceNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
@ -107,7 +107,7 @@ struct NonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(NonLocalMeans, Regression)
|
||||
TEST_P(BruteForceNonLocalMeans, Regression)
|
||||
{
|
||||
using cv::gpu::GpuMat;
|
||||
|
||||
@ -134,7 +134,52 @@ TEST_P(NonLocalMeans, Regression)
|
||||
EXPECT_MAT_NEAR(gray_gold, dgray, 1e-4);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Denoising, NonLocalMeans, ALL_DEVICES);
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Denoising, BruteForceNonLocalMeans, ALL_DEVICES);
|
||||
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Fast Force Non local means
|
||||
|
||||
struct FastNonLocalMeans: testing::TestWithParam<cv::gpu::DeviceInfo>
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GetParam();
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(FastNonLocalMeans, Regression)
|
||||
{
|
||||
using cv::gpu::GpuMat;
|
||||
|
||||
cv::Mat bgr = readImage("denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(bgr.empty());
|
||||
|
||||
cv::Mat gray;
|
||||
cv::cvtColor(bgr, gray, CV_BGR2GRAY);
|
||||
|
||||
GpuMat dbgr, dgray;
|
||||
cv::gpu::fastNlMeansDenoising(GpuMat(gray), dgray, 10);
|
||||
|
||||
#if 0
|
||||
//dumpImage("denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
|
||||
dumpImage("denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
|
||||
#endif
|
||||
|
||||
//cv::Mat bgr_gold = readImage("denoising/denoised_lena_bgr.png", cv::IMREAD_COLOR);
|
||||
cv::Mat gray_gold = readImage("denoising/fnlm_denoised_lena_gray.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(/*bgr_gold.empty() || */gray_gold.empty());
|
||||
|
||||
//EXPECT_MAT_NEAR(bgr_gold, dbgr, 1e-4);
|
||||
EXPECT_MAT_NEAR(gray_gold, dgray, 1e-4);
|
||||
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Denoising, FastNonLocalMeans, ALL_DEVICES);
|
||||
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
Loading…
Reference in New Issue
Block a user