mirror of
https://github.com/opencv/opencv.git
synced 2024-11-30 06:10:02 +08:00
145 lines
3.6 KiB
C++
145 lines
3.6 KiB
C++
#include "perf_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace testing;
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// BilateralFilter
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth , int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_KernelSz, Denoising_BilateralFilter,
|
|
Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(3, 5, 9)))
|
|
{
|
|
declare.time(30.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
int channels = GET_PARAM(2);
|
|
int kernel_size = GET_PARAM(3);
|
|
|
|
float sigma_color = 7;
|
|
float sigma_spatial = 5;
|
|
int borderMode = cv::BORDER_REFLECT101;
|
|
|
|
int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (runOnGpu)
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
|
|
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
|
|
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// nonLocalMeans
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth , int, int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans,
|
|
Combine(GPU_TYPICAL_MAT_SIZES, Values<MatDepth>(CV_8U), Values(1), Values(21), Values(5, 7)))
|
|
{
|
|
declare.time(30.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
int channels = GET_PARAM(2);
|
|
|
|
int search_widow_size = GET_PARAM(3);
|
|
int block_size = GET_PARAM(4);
|
|
|
|
float h = 10;
|
|
int borderMode = cv::BORDER_REFLECT101;
|
|
|
|
int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (runOnGpu)
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
|
|
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FAIL();
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// fastNonLocalMeans
|
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth , int, int, int);
|
|
|
|
PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_FastNonLocalMeans,
|
|
Combine(GPU_TYPICAL_MAT_SIZES, Values<MatDepth>(CV_8U), Values(1), Values(21), Values(5, 7)))
|
|
{
|
|
declare.time(30.0);
|
|
|
|
cv::Size size = GET_PARAM(0);
|
|
int depth = GET_PARAM(1);
|
|
int channels = GET_PARAM(2);
|
|
|
|
int search_widow_size = GET_PARAM(3);
|
|
int block_size = GET_PARAM(4);
|
|
|
|
float h = 10;
|
|
int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
cv::Mat src(size, type);
|
|
fillRandom(src);
|
|
|
|
if (runOnGpu)
|
|
{
|
|
cv::gpu::GpuMat d_src(src);
|
|
cv::gpu::GpuMat d_dst;
|
|
cv::gpu::fastNlMeansDenoising(d_src, d_dst, h, search_widow_size/2, block_size/2);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::gpu::fastNlMeansDenoising(d_src, d_dst, h, search_widow_size/2, block_size/2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
|
|
|
TEST_CYCLE()
|
|
{
|
|
cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size);
|
|
}
|
|
}
|
|
} |