opencv/samples/cpp/rgbdodometry.cpp

179 lines
5.5 KiB
C++
Raw Normal View History

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <cstdio>
#include <iostream>
#include <ctime>
using namespace cv;
using namespace std;
static
void cvtDepth2Cloud( const Mat& depth, Mat& cloud, const Mat& cameraMatrix )
{
const float inv_fx = 1.f/cameraMatrix.at<float>(0,0);
const float inv_fy = 1.f/cameraMatrix.at<float>(1,1);
const float ox = cameraMatrix.at<float>(0,2);
const float oy = cameraMatrix.at<float>(1,2);
cloud.create( depth.size(), CV_32FC3 );
for( int y = 0; y < cloud.rows; y++ )
{
Point3f* cloud_ptr = (Point3f*)cloud.ptr(y);
const float* depth_prt = (const float*) depth.ptr(y);
for( int x = 0; x < cloud.cols; x++ )
{
float z = depth_prt[x];
cloud_ptr[x].x = (x - ox) * z * inv_fx;
cloud_ptr[x].y = (y - oy) * z * inv_fy;
cloud_ptr[x].z = z;
}
}
}
template<class ImageElemType>
static void warpImage( const Mat& image, const Mat& depth,
const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff,
Mat& warpedImage )
{
const Rect rect = Rect(0, 0, image.cols, image.rows);
vector<Point2f> points2d;
Mat cloud, transformedCloud;
cvtDepth2Cloud( depth, cloud, cameraMatrix );
perspectiveTransform( cloud, transformedCloud, Rt );
projectPoints( transformedCloud.reshape(3,1), Mat::eye(3,3,CV_64FC1), Mat::zeros(3,1,CV_64FC1), cameraMatrix, distCoeff, points2d );
Mat pointsPositions( points2d );
pointsPositions = pointsPositions.reshape( 2, image.rows );
warpedImage.create( image.size(), image.type() );
warpedImage = Scalar::all(0);
Mat zBuffer( image.size(), CV_32FC1, FLT_MAX );
for( int y = 0; y < image.rows; y++ )
{
for( int x = 0; x < image.cols; x++ )
{
const Point3f p3d = transformedCloud.at<Point3f>(y,x);
const Point p2d = pointsPositions.at<Point2f>(y,x);
if( !cvIsNaN(cloud.at<Point3f>(y,x).z) && cloud.at<Point3f>(y,x).z > 0 &&
rect.contains(p2d) && zBuffer.at<float>(p2d) > p3d.z )
{
warpedImage.at<ImageElemType>(p2d) = image.at<ImageElemType>(y,x);
zBuffer.at<float>(p2d) = p3d.z;
}
}
}
}
int main(int argc, char** argv)
{
float vals[] = {525., 0., 3.1950000000000000e+02,
0., 525., 2.3950000000000000e+02,
0., 0., 1.};
const Mat cameraMatrix = Mat(3,3,CV_32FC1,vals);
const Mat distCoeff(1,5,CV_32FC1,Scalar(0));
if( argc != 5 && argc != 6 )
{
cout << "Format: image0 depth0 image1 depth1 [transformationType]" << endl;
cout << "Depth file must be 16U image stored depth in mm." << endl;
cout << "Transformation types:" << endl;
cout << " -rbm - rigid body motion (default)" << endl;
cout << " -r - rotation rotation only" << endl;
cout << " -t - translation only" << endl;
return -1;
}
Mat colorImage0 = imread( argv[1] );
Mat depth0 = imread( argv[2], -1 );
Mat colorImage1 = imread( argv[3] );
Mat depth1 = imread( argv[4], -1 );
if( colorImage0.empty() || depth0.empty() || colorImage1.empty() || depth1.empty() )
{
cout << "Data (rgb or depth images) is empty.";
return -1;
}
int transformationType = RIGID_BODY_MOTION;
if( argc == 6 )
{
string ttype = argv[5];
if( ttype == "-rbm" )
{
transformationType = RIGID_BODY_MOTION;
}
else if ( ttype == "-r")
{
transformationType = ROTATION;
}
else if ( ttype == "-t")
{
transformationType = TRANSLATION;
}
else
{
cout << "Unsupported transformation type." << endl;
return -1;
}
}
Mat grayImage0, grayImage1, depthFlt0, depthFlt1/*in meters*/;
cvtColor( colorImage0, grayImage0, CV_BGR2GRAY );
cvtColor( colorImage1, grayImage1, CV_BGR2GRAY );
depth0.convertTo( depthFlt0, CV_32FC1, 1./1000 );
depth1.convertTo( depthFlt1, CV_32FC1, 1./1000 );
TickMeter tm;
Mat Rt;
vector<int> iterCounts(4);
iterCounts[0] = 7;
iterCounts[1] = 7;
iterCounts[2] = 7;
iterCounts[3] = 10;
vector<float> minGradMagnitudes(4);
minGradMagnitudes[0] = 12;
minGradMagnitudes[1] = 5;
minGradMagnitudes[2] = 3;
minGradMagnitudes[3] = 1;
const float minDepth = 0.f; //in meters
const float maxDepth = 4.f; //in meters
const float maxDepthDiff = 0.07f; //in meters
tm.start();
bool isFound = cv::RGBDOdometry( Rt, Mat(),
grayImage0, depthFlt0, Mat(),
grayImage1, depthFlt1, Mat(),
cameraMatrix, minDepth, maxDepth, maxDepthDiff,
iterCounts, minGradMagnitudes, transformationType );
tm.stop();
cout << "Rt = " << Rt << endl;
cout << "Time = " << tm.getTimeSec() << " sec." << endl;
if( !isFound )
{
cout << "Rigid body motion cann't be estimated for given RGBD data." << endl;
return -1;
}
Mat warpedImage0;
warpImage<Point3_<uchar> >( colorImage0, depthFlt0, Rt, cameraMatrix, distCoeff, warpedImage0 );
imshow( "image0", colorImage0 );
imshow( "warped_image0", warpedImage0 );
imshow( "image1", colorImage1 );
waitKey();
return 0;
}