opencv/modules/features2d/src/blobdetector.cpp

368 lines
12 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
2010-12-27 17:15:08 +08:00
#include "precomp.hpp"
2011-02-10 06:45:45 +08:00
#include <iterator>
#include <limits>
//#define DEBUG_BLOB_DETECTOR
#ifdef DEBUG_BLOB_DETECTOR
# include "opencv2/opencv_modules.hpp"
# ifdef HAVE_OPENCV_HIGHGUI
# include "opencv2/highgui.hpp"
# else
# undef DEBUG_BLOB_DETECTOR
# endif
#endif
namespace cv
{
class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
{
public:
explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
struct CV_EXPORTS Center
{
Point2d location;
double radius;
double confidence;
};
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> &centers) const;
Params params;
AlgorithmInfo* info() const;
};
2010-12-27 17:15:08 +08:00
/*
* SimpleBlobDetector
*/
2010-12-27 17:15:08 +08:00
SimpleBlobDetector::Params::Params()
{
2012-10-17 15:12:04 +08:00
thresholdStep = 10;
minThreshold = 50;
maxThreshold = 220;
minRepeatability = 2;
minDistBetweenBlobs = 10;
filterByColor = true;
blobColor = 0;
filterByArea = true;
minArea = 25;
maxArea = 5000;
filterByCircularity = false;
minCircularity = 0.8f;
maxCircularity = std::numeric_limits<float>::max();
filterByInertia = true;
//minInertiaRatio = 0.6;
minInertiaRatio = 0.1f;
maxInertiaRatio = std::numeric_limits<float>::max();
filterByConvexity = true;
//minConvexity = 0.8;
minConvexity = 0.95f;
maxConvexity = std::numeric_limits<float>::max();
}
void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
{
thresholdStep = fn["thresholdStep"];
minThreshold = fn["minThreshold"];
maxThreshold = fn["maxThreshold"];
minRepeatability = (size_t)(int)fn["minRepeatability"];
minDistBetweenBlobs = fn["minDistBetweenBlobs"];
filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
blobColor = (uchar)(int)fn["blobColor"];
filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
minArea = fn["minArea"];
maxArea = fn["maxArea"];
filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
minCircularity = fn["minCircularity"];
maxCircularity = fn["maxCircularity"];
filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
minInertiaRatio = fn["minInertiaRatio"];
maxInertiaRatio = fn["maxInertiaRatio"];
filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
minConvexity = fn["minConvexity"];
maxConvexity = fn["maxConvexity"];
}
void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
{
fs << "thresholdStep" << thresholdStep;
fs << "minThreshold" << minThreshold;
fs << "maxThreshold" << maxThreshold;
fs << "minRepeatability" << (int)minRepeatability;
fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
fs << "filterByColor" << (int)filterByColor;
fs << "blobColor" << (int)blobColor;
fs << "filterByArea" << (int)filterByArea;
fs << "minArea" << minArea;
fs << "maxArea" << maxArea;
fs << "filterByCircularity" << (int)filterByCircularity;
fs << "minCircularity" << minCircularity;
fs << "maxCircularity" << maxCircularity;
fs << "filterByInertia" << (int)filterByInertia;
fs << "minInertiaRatio" << minInertiaRatio;
fs << "maxInertiaRatio" << maxInertiaRatio;
fs << "filterByConvexity" << (int)filterByConvexity;
fs << "minConvexity" << minConvexity;
fs << "maxConvexity" << maxConvexity;
}
2010-12-27 17:15:08 +08:00
SimpleBlobDetector::SimpleBlobDetector(const SimpleBlobDetector::Params &parameters) :
params(parameters)
{
}
void SimpleBlobDetector::read( const cv::FileNode& fn )
{
params.read(fn);
}
void SimpleBlobDetector::write( cv::FileStorage& fs ) const
{
params.write(fs);
}
2014-02-04 20:34:18 +08:00
void SimpleBlobDetector::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> &centers) const
{
2014-02-04 20:34:18 +08:00
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
2012-10-17 15:12:04 +08:00
(void)image;
centers.clear();
std::vector < std::vector<Point> > contours;
2012-10-17 15:12:04 +08:00
Mat tmpBinaryImage = binaryImage.clone();
findContours(tmpBinaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
#ifdef DEBUG_BLOB_DETECTOR
2012-10-17 15:12:04 +08:00
// Mat keypointsImage;
// cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
//
// Mat contoursImage;
// cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
// drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
// imshow("contours", contoursImage );
#endif
2012-10-17 15:12:04 +08:00
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
{
Center center;
center.confidence = 1;
Moments moms = moments(Mat(contours[contourIdx]));
if (params.filterByArea)
{
double area = moms.m00;
if (area < params.minArea || area >= params.maxArea)
continue;
}
if (params.filterByCircularity)
{
double area = moms.m00;
double perimeter = arcLength(Mat(contours[contourIdx]), true);
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
if (ratio < params.minCircularity || ratio >= params.maxCircularity)
continue;
}
if (params.filterByInertia)
{
double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
2012-10-17 15:12:04 +08:00
const double eps = 1e-2;
double ratio;
if (denominator > eps)
{
double cosmin = (moms.mu20 - moms.mu02) / denominator;
double sinmin = 2 * moms.mu11 / denominator;
double cosmax = -cosmin;
double sinmax = -sinmin;
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
ratio = imin / imax;
}
else
{
ratio = 1;
}
if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
continue;
center.confidence = ratio * ratio;
}
if (params.filterByConvexity)
{
std::vector < Point > hull;
2012-10-17 15:12:04 +08:00
convexHull(Mat(contours[contourIdx]), hull);
double area = contourArea(Mat(contours[contourIdx]));
double hullArea = contourArea(Mat(hull));
double ratio = area / hullArea;
if (ratio < params.minConvexity || ratio >= params.maxConvexity)
continue;
}
2012-10-17 15:12:04 +08:00
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
if (params.filterByColor)
{
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
continue;
}
//compute blob radius
{
std::vector<double> dists;
2012-10-17 15:12:04 +08:00
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
{
Point2d pt = contours[contourIdx][pointIdx];
dists.push_back(norm(center.location - pt));
}
std::sort(dists.begin(), dists.end());
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
}
if(moms.m00 == 0.0)
continue;
centers.push_back(center);
#ifdef DEBUG_BLOB_DETECTOR
2012-10-17 15:12:04 +08:00
// circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
#endif
2012-10-17 15:12:04 +08:00
}
#ifdef DEBUG_BLOB_DETECTOR
2012-10-17 15:12:04 +08:00
// imshow("bk", keypointsImage );
// waitKey();
#endif
}
2014-01-24 23:39:05 +08:00
void SimpleBlobDetector::detectImpl(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray) const
{
2012-10-17 15:12:04 +08:00
//TODO: support mask
keypoints.clear();
Mat grayscaleImage;
if (image.channels() == 3)
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
2012-10-17 15:12:04 +08:00
else
2014-01-24 23:39:05 +08:00
grayscaleImage = image.getMat();
2012-10-17 15:12:04 +08:00
std::vector < std::vector<Center> > centers;
2012-10-17 15:12:04 +08:00
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
{
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
std::vector < Center > curCenters;
2012-10-17 15:12:04 +08:00
findBlobs(grayscaleImage, binarizedImage, curCenters);
std::vector < std::vector<Center> > newCenters;
2012-10-17 15:12:04 +08:00
for (size_t i = 0; i < curCenters.size(); i++)
{
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
if (!isNew)
{
centers[j].push_back(curCenters[i]);
size_t k = centers[j].size() - 1;
while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
{
centers[j][k] = centers[j][k-1];
k--;
}
centers[j][k] = curCenters[i];
break;
}
}
if (isNew)
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
2012-10-17 15:12:04 +08:00
}
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
}
for (size_t i = 0; i < centers.size(); i++)
{
if (centers[i].size() < params.minRepeatability)
continue;
Point2d sumPoint(0, 0);
double normalizer = 0;
for (size_t j = 0; j < centers[i].size(); j++)
{
sumPoint += centers[i][j].confidence * centers[i][j].location;
normalizer += centers[i][j].confidence;
}
sumPoint *= (1. / normalizer);
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
2012-10-17 15:12:04 +08:00
keypoints.push_back(kpt);
}
}