2019-03-31 16:51:09 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Used in accuracy and perf tests as a content of .cpp file
// Note: don't use "precomp.hpp" here
# include "opencv2/ts.hpp"
# include "opencv2/ts/ts_perf.hpp"
# include "opencv2/core/utility.hpp"
# include "opencv2/core/ocl.hpp"
# include "opencv2/dnn.hpp"
# include "test_common.hpp"
# include <opencv2/core/utils/configuration.private.hpp>
# include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
2019-04-01 23:11:10 +08:00
CV__DNN_INLINE_NS_BEGIN
2019-03-31 16:51:09 +08:00
void PrintTo ( const cv : : dnn : : Backend & v , std : : ostream * os )
{
switch ( v ) {
case DNN_BACKEND_DEFAULT : * os < < " DEFAULT " ; return ;
case DNN_BACKEND_HALIDE : * os < < " HALIDE " ; return ;
case DNN_BACKEND_INFERENCE_ENGINE : * os < < " DLIE " ; return ;
2019-04-01 23:11:10 +08:00
case DNN_BACKEND_VKCOM : * os < < " VKCOM " ; return ;
2019-03-31 16:51:09 +08:00
case DNN_BACKEND_OPENCV : * os < < " OCV " ; return ;
} // don't use "default:" to emit compiler warnings
* os < < " DNN_BACKEND_UNKNOWN( " < < ( int ) v < < " ) " ;
}
void PrintTo ( const cv : : dnn : : Target & v , std : : ostream * os )
{
switch ( v ) {
case DNN_TARGET_CPU : * os < < " CPU " ; return ;
case DNN_TARGET_OPENCL : * os < < " OCL " ; return ;
case DNN_TARGET_OPENCL_FP16 : * os < < " OCL_FP16 " ; return ;
case DNN_TARGET_MYRIAD : * os < < " MYRIAD " ; return ;
2019-04-01 23:11:10 +08:00
case DNN_TARGET_VULKAN : * os < < " VULKAN " ; return ;
2019-03-31 16:51:09 +08:00
case DNN_TARGET_FPGA : * os < < " FPGA " ; return ;
} // don't use "default:" to emit compiler warnings
* os < < " DNN_TARGET_UNKNOWN( " < < ( int ) v < < " ) " ;
}
void PrintTo ( const tuple < cv : : dnn : : Backend , cv : : dnn : : Target > v , std : : ostream * os )
{
PrintTo ( get < 0 > ( v ) , os ) ;
* os < < " / " ;
PrintTo ( get < 1 > ( v ) , os ) ;
}
2019-04-01 23:11:10 +08:00
CV__DNN_INLINE_NS_END
2019-03-31 16:51:09 +08:00
} } // namespace
namespace opencv_test {
void normAssert (
cv : : InputArray ref , cv : : InputArray test , const char * comment /*= ""*/ ,
double l1 /*= 0.00001*/ , double lInf /*= 0.0001*/ )
{
double normL1 = cvtest : : norm ( ref , test , cv : : NORM_L1 ) / ref . getMat ( ) . total ( ) ;
EXPECT_LE ( normL1 , l1 ) < < comment ;
double normInf = cvtest : : norm ( ref , test , cv : : NORM_INF ) ;
EXPECT_LE ( normInf , lInf ) < < comment ;
}
std : : vector < cv : : Rect2d > matToBoxes ( const cv : : Mat & m )
{
EXPECT_EQ ( m . type ( ) , CV_32FC1 ) ;
EXPECT_EQ ( m . dims , 2 ) ;
EXPECT_EQ ( m . cols , 4 ) ;
std : : vector < cv : : Rect2d > boxes ( m . rows ) ;
for ( int i = 0 ; i < m . rows ; + + i )
{
CV_Assert ( m . row ( i ) . isContinuous ( ) ) ;
const float * data = m . ptr < float > ( i ) ;
double l = data [ 0 ] , t = data [ 1 ] , r = data [ 2 ] , b = data [ 3 ] ;
boxes [ i ] = cv : : Rect2d ( l , t , r - l , b - t ) ;
}
return boxes ;
}
void normAssertDetections (
const std : : vector < int > & refClassIds ,
const std : : vector < float > & refScores ,
const std : : vector < cv : : Rect2d > & refBoxes ,
const std : : vector < int > & testClassIds ,
const std : : vector < float > & testScores ,
const std : : vector < cv : : Rect2d > & testBoxes ,
const char * comment /*= ""*/ , double confThreshold /*= 0.0*/ ,
double scores_diff /*= 1e-5*/ , double boxes_iou_diff /*= 1e-4*/ )
{
std : : vector < bool > matchedRefBoxes ( refBoxes . size ( ) , false ) ;
for ( int i = 0 ; i < testBoxes . size ( ) ; + + i )
{
double testScore = testScores [ i ] ;
if ( testScore < confThreshold )
continue ;
int testClassId = testClassIds [ i ] ;
const cv : : Rect2d & testBox = testBoxes [ i ] ;
bool matched = false ;
for ( int j = 0 ; j < refBoxes . size ( ) & & ! matched ; + + j )
{
if ( ! matchedRefBoxes [ j ] & & testClassId = = refClassIds [ j ] & &
std : : abs ( testScore - refScores [ j ] ) < scores_diff )
{
double interArea = ( testBox & refBoxes [ j ] ) . area ( ) ;
double iou = interArea / ( testBox . area ( ) + refBoxes [ j ] . area ( ) - interArea ) ;
if ( std : : abs ( iou - 1.0 ) < boxes_iou_diff )
{
matched = true ;
matchedRefBoxes [ j ] = true ;
}
}
}
if ( ! matched )
std : : cout < < cv : : format ( " Unmatched prediction: class %d score %f box " ,
testClassId , testScore ) < < testBox < < std : : endl ;
EXPECT_TRUE ( matched ) < < comment ;
}
// Check unmatched reference detections.
for ( int i = 0 ; i < refBoxes . size ( ) ; + + i )
{
if ( ! matchedRefBoxes [ i ] & & refScores [ i ] > confThreshold )
{
std : : cout < < cv : : format ( " Unmatched reference: class %d score %f box " ,
refClassIds [ i ] , refScores [ i ] ) < < refBoxes [ i ] < < std : : endl ;
EXPECT_LE ( refScores [ i ] , confThreshold ) < < comment ;
}
}
}
// For SSD-based object detection networks which produce output of shape 1x1xNx7
// where N is a number of detections and an every detection is represented by
// a vector [batchId, classId, confidence, left, top, right, bottom].
void normAssertDetections (
cv : : Mat ref , cv : : Mat out , const char * comment /*= ""*/ ,
double confThreshold /*= 0.0*/ , double scores_diff /*= 1e-5*/ ,
double boxes_iou_diff /*= 1e-4*/ )
{
CV_Assert ( ref . total ( ) % 7 = = 0 ) ;
CV_Assert ( out . total ( ) % 7 = = 0 ) ;
ref = ref . reshape ( 1 , ref . total ( ) / 7 ) ;
out = out . reshape ( 1 , out . total ( ) / 7 ) ;
cv : : Mat refClassIds , testClassIds ;
ref . col ( 1 ) . convertTo ( refClassIds , CV_32SC1 ) ;
out . col ( 1 ) . convertTo ( testClassIds , CV_32SC1 ) ;
std : : vector < float > refScores ( ref . col ( 2 ) ) , testScores ( out . col ( 2 ) ) ;
std : : vector < cv : : Rect2d > refBoxes = matToBoxes ( ref . colRange ( 3 , 7 ) ) ;
std : : vector < cv : : Rect2d > testBoxes = matToBoxes ( out . colRange ( 3 , 7 ) ) ;
normAssertDetections ( refClassIds , refScores , refBoxes , testClassIds , testScores ,
testBoxes , comment , confThreshold , scores_diff , boxes_iou_diff ) ;
}
2019-05-29 20:29:31 +08:00
void readFileContent ( const std : : string & filename , CV_OUT std : : vector < char > & content )
2019-03-31 16:51:09 +08:00
{
2019-05-29 20:29:31 +08:00
const std : : ios : : openmode mode = std : : ios : : in | std : : ios : : binary ;
2019-03-31 16:51:09 +08:00
std : : ifstream ifs ( filename . c_str ( ) , mode ) ;
2019-05-29 20:29:31 +08:00
ASSERT_TRUE ( ifs . is_open ( ) ) ;
2019-03-31 16:51:09 +08:00
content . clear ( ) ;
ifs . seekg ( 0 , std : : ios : : end ) ;
2019-05-29 20:29:31 +08:00
const size_t sz = ifs . tellg ( ) ;
content . resize ( sz ) ;
2019-03-31 16:51:09 +08:00
ifs . seekg ( 0 , std : : ios : : beg ) ;
2019-05-29 20:29:31 +08:00
ifs . read ( ( char * ) content . data ( ) , sz ) ;
ASSERT_FALSE ( ifs . fail ( ) ) ;
2019-03-31 16:51:09 +08:00
}
testing : : internal : : ParamGenerator < tuple < Backend , Target > > dnnBackendsAndTargets (
bool withInferenceEngine /*= true*/ ,
bool withHalide /*= false*/ ,
2019-04-01 23:11:10 +08:00
bool withCpuOCV /*= true*/ ,
bool withVkCom /*= true*/
2019-03-31 16:51:09 +08:00
)
{
# ifdef HAVE_INF_ENGINE
bool withVPU = validateVPUType ( ) ;
# endif
std : : vector < tuple < Backend , Target > > targets ;
std : : vector < Target > available ;
if ( withHalide )
{
available = getAvailableTargets ( DNN_BACKEND_HALIDE ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
targets . push_back ( make_tuple ( DNN_BACKEND_HALIDE , * i ) ) ;
}
# ifdef HAVE_INF_ENGINE
if ( withInferenceEngine )
{
available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
if ( * i = = DNN_TARGET_MYRIAD & & ! withVPU )
continue ;
targets . push_back ( make_tuple ( DNN_BACKEND_INFERENCE_ENGINE , * i ) ) ;
}
}
# else
CV_UNUSED ( withInferenceEngine ) ;
# endif
2019-04-01 23:11:10 +08:00
if ( withVkCom )
{
available = getAvailableTargets ( DNN_BACKEND_VKCOM ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
targets . push_back ( make_tuple ( DNN_BACKEND_VKCOM , * i ) ) ;
}
2019-03-31 16:51:09 +08:00
{
available = getAvailableTargets ( DNN_BACKEND_OPENCV ) ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
if ( ! withCpuOCV & & * i = = DNN_TARGET_CPU )
continue ;
targets . push_back ( make_tuple ( DNN_BACKEND_OPENCV , * i ) ) ;
}
}
if ( targets . empty ( ) ) // validate at least CPU mode
targets . push_back ( make_tuple ( DNN_BACKEND_OPENCV , DNN_TARGET_CPU ) ) ;
return testing : : ValuesIn ( targets ) ;
}
# ifdef HAVE_INF_ENGINE
static std : : string getTestInferenceEngineVPUType ( )
{
static std : : string param_vpu_type = utils : : getConfigurationParameterString ( " OPENCV_TEST_DNN_IE_VPU_TYPE " , " " ) ;
return param_vpu_type ;
}
static bool validateVPUType_ ( )
{
std : : string test_vpu_type = getTestInferenceEngineVPUType ( ) ;
if ( test_vpu_type = = " DISABLED " | | test_vpu_type = = " disabled " )
{
return false ;
}
std : : vector < Target > available = getAvailableTargets ( DNN_BACKEND_INFERENCE_ENGINE ) ;
bool have_vpu_target = false ;
for ( std : : vector < Target > : : const_iterator i = available . begin ( ) ; i ! = available . end ( ) ; + + i )
{
if ( * i = = DNN_TARGET_MYRIAD )
{
have_vpu_target = true ;
break ;
}
}
if ( test_vpu_type . empty ( ) )
{
if ( have_vpu_target )
{
CV_LOG_INFO ( NULL , " OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter. " )
}
}
else
{
if ( ! have_vpu_target )
{
CV_LOG_FATAL ( NULL , " OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = ' " < < test_vpu_type < < " ', but VPU is not detected. STOP. " ) ;
exit ( 1 ) ;
}
std : : string dnn_vpu_type = getInferenceEngineVPUType ( ) ;
if ( dnn_vpu_type ! = test_vpu_type )
{
CV_LOG_FATAL ( NULL , " OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: ' " < < test_vpu_type < < " ' vs ' " < < dnn_vpu_type < < " '. STOP. " ) ;
exit ( 1 ) ;
}
}
2019-06-15 20:17:25 +08:00
if ( have_vpu_target )
{
std : : string dnn_vpu_type = getInferenceEngineVPUType ( ) ;
if ( dnn_vpu_type = = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 )
registerGlobalSkipTag ( CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 ) ;
if ( dnn_vpu_type = = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X )
registerGlobalSkipTag ( CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X ) ;
}
2019-03-31 16:51:09 +08:00
return true ;
}
bool validateVPUType ( )
{
static bool result = validateVPUType_ ( ) ;
return result ;
}
# endif // HAVE_INF_ENGINE
2019-06-15 20:17:25 +08:00
void initDNNTests ( )
{
const char * extraTestDataPath =
# ifdef WINRT
NULL ;
# else
getenv ( " OPENCV_DNN_TEST_DATA_PATH " ) ;
# endif
if ( extraTestDataPath )
cvtest : : addDataSearchPath ( extraTestDataPath ) ;
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_HALIDE ,
CV_TEST_TAG_DNN_SKIP_OPENCL , CV_TEST_TAG_DNN_SKIP_OPENCL_FP16
) ;
# if defined(INF_ENGINE_RELEASE)
registerGlobalSkipTag (
# if INF_ENGINE_VER_MAJOR_EQ(2018050000)
CV_TEST_TAG_DNN_SKIP_IE_2018R5 ,
# elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
CV_TEST_TAG_DNN_SKIP_IE_2019R1 ,
2019-07-25 14:57:49 +08:00
# if INF_ENGINE_RELEASE == 2019010100
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 ,
# endif
# elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
CV_TEST_TAG_DNN_SKIP_IE_2019R2 ,
2019-06-15 20:17:25 +08:00
# endif
CV_TEST_TAG_DNN_SKIP_IE
) ;
# endif
registerGlobalSkipTag (
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
CV_TEST_TAG_DNN_SKIP_IE_OPENCL , CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16
) ;
2019-06-27 04:17:19 +08:00
# ifdef HAVE_VULKAN
registerGlobalSkipTag (
CV_TEST_TAG_DNN_SKIP_VULKAN
) ;
# endif
2019-06-15 20:17:25 +08:00
}
2019-03-31 16:51:09 +08:00
} // namespace