opencv/modules/calib3d/src/ptsetreg.cpp

939 lines
30 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <algorithm>
#include <iterator>
#include <limits>
namespace cv
{
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters )
{
if( modelPoints <= 0 )
CV_Error( Error::StsOutOfRange, "the number of model points should be positive" );
p = MAX(p, 0.);
p = MIN(p, 1.);
ep = MAX(ep, 0.);
ep = MIN(ep, 1.);
// avoid inf's & nan's
double num = MAX(1. - p, DBL_MIN);
double denom = 1. - std::pow(1. - ep, modelPoints);
if( denom < DBL_MIN )
return 0;
num = std::log(num);
denom = std::log(denom);
return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom);
}
class RANSACPointSetRegistrator : public PointSetRegistrator
{
public:
RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
: cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
{
checkPartialSubsets = false;
}
int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
{
cb->computeError( m1, m2, model, err );
mask.create(err.size(), CV_8U);
CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U);
const float* errptr = err.ptr<float>();
uchar* maskptr = mask.ptr<uchar>();
float t = (float)(thresh*thresh);
int i, n = (int)err.total(), nz = 0;
for( i = 0; i < n; i++ )
{
int f = errptr[i] <= t;
maskptr[i] = (uchar)f;
nz += f;
}
return nz;
}
bool getSubset( const Mat& m1, const Mat& m2,
Mat& ms1, Mat& ms2, RNG& rng,
int maxAttempts=1000 ) const
{
cv::AutoBuffer<int> _idx(modelPoints);
int* idx = _idx;
int i = 0, j, k, iters = 0;
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int esz1 = (int)m1.elemSize1()*d1, esz2 = (int)m2.elemSize1()*d2;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();
ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));
int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();
CV_Assert( count >= modelPoints && count == count2 );
CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
esz1 /= sizeof(int);
esz2 /= sizeof(int);
for(; iters < maxAttempts; iters++)
{
for( i = 0; i < modelPoints && iters < maxAttempts; )
{
int idx_i = 0;
for(;;)
{
idx_i = idx[i] = rng.uniform(0, count);
for( j = 0; j < i; j++ )
if( idx_i == idx[j] )
break;
if( j == i )
break;
}
for( k = 0; k < esz1; k++ )
ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
for( k = 0; k < esz2; k++ )
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
{
// we may have selected some bad points;
// so, let's remove some of them randomly
i = rng.uniform(0, i+1);
iters++;
continue;
}
i++;
}
if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i))
continue;
break;
}
return i == modelPoints && iters < maxAttempts;
}
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
{
bool result = false;
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
Mat err, mask, model, bestModel, ms1, ms2;
int iter, niters = MAX(maxIters, 1);
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0;
RNG rng((uint64)-1);
2013-08-13 21:03:56 +08:00
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
if( count < modelPoints )
return false;
Mat bestMask0, bestMask;
if( _mask.needed() )
{
2013-03-04 20:02:15 +08:00
_mask.create(count, 1, CV_8U, -1, true);
bestMask0 = bestMask = _mask.getMat();
CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count );
}
else
{
bestMask.create(count, 1, CV_8U);
bestMask0 = bestMask;
}
if( count == modelPoints )
{
if( cb->runKernel(m1, m2, bestModel) <= 0 )
return false;
bestModel.copyTo(_model);
bestMask.setTo(Scalar::all(1));
return true;
}
for( iter = 0; iter < niters; iter++ )
{
2016-02-01 16:10:13 +08:00
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, rng, 10000 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = cb->runKernel( ms1, ms2, model );
if( nmodels <= 0 )
continue;
CV_Assert( model.rows % nmodels == 0 );
Size modelSize(model.cols, model.rows/nmodels);
for( i = 0; i < nmodels; i++ )
{
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
2016-02-01 16:10:13 +08:00
int goodCount = findInliers( m1, m2, model_i, err, mask, threshold );
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
{
std::swap(mask, bestMask);
model_i.copyTo(bestModel);
maxGoodCount = goodCount;
niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters );
}
}
}
if( maxGoodCount > 0 )
{
if( bestMask.data != bestMask0.data )
{
if( bestMask.size() == bestMask0.size() )
bestMask.copyTo(bestMask0);
else
transpose(bestMask, bestMask0);
}
bestModel.copyTo(_model);
result = true;
}
else
_model.release();
return result;
}
void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }
Ptr<PointSetRegistrator::Callback> cb;
int modelPoints;
bool checkPartialSubsets;
double threshold;
double confidence;
int maxIters;
};
class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator
{
public:
LMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
int _modelPoints=0, double _confidence=0.99, int _maxIters=1000)
: RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {}
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
{
const double outlierRatio = 0.45;
bool result = false;
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
Mat ms1, ms2, err, errf, model, bestModel, mask, mask0;
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
2016-02-01 16:10:13 +08:00
double minMedian = DBL_MAX;
RNG rng((uint64)-1);
2013-08-13 21:03:56 +08:00
CV_Assert( cb );
CV_Assert( confidence > 0 && confidence < 1 );
CV_Assert( count >= 0 && count2 == count );
if( count < modelPoints )
return false;
if( _mask.needed() )
{
2013-03-04 20:02:15 +08:00
_mask.create(count, 1, CV_8U, -1, true);
mask0 = mask = _mask.getMat();
CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count );
}
if( count == modelPoints )
{
if( cb->runKernel(m1, m2, bestModel) <= 0 )
return false;
bestModel.copyTo(_model);
mask.setTo(Scalar::all(1));
return true;
}
2013-03-03 04:54:46 +08:00
int iter, niters = RANSACUpdateNumIters(confidence, outlierRatio, modelPoints, maxIters);
niters = MAX(niters, 3);
for( iter = 0; iter < niters; iter++ )
{
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, rng );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = cb->runKernel( ms1, ms2, model );
if( nmodels <= 0 )
continue;
CV_Assert( model.rows % nmodels == 0 );
Size modelSize(model.cols, model.rows/nmodels);
for( i = 0; i < nmodels; i++ )
{
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
cb->computeError( m1, m2, model_i, err );
if( err.depth() != CV_32F )
err.convertTo(errf, CV_32F);
else
errf = err;
CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count );
std::nth_element(errf.ptr<int>(), errf.ptr<int>() + count/2, errf.ptr<int>() + count);
double median = errf.at<float>(count/2);
if( median < minMedian )
{
minMedian = median;
model_i.copyTo(bestModel);
}
}
}
if( minMedian < DBL_MAX )
{
2016-02-01 16:10:13 +08:00
double sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
sigma = MAX( sigma, 0.001 );
count = findInliers( m1, m2, bestModel, err, mask, sigma );
if( _mask.needed() && mask0.data != mask.data )
{
if( mask0.size() == mask.size() )
mask.copyTo(mask0);
else
transpose(mask, mask0);
}
bestModel.copyTo(_model);
result = count >= modelPoints;
}
else
_model.release();
return result;
}
};
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _threshold,
double _confidence, int _maxIters)
{
2013-08-13 21:03:56 +08:00
return Ptr<PointSetRegistrator>(
new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}
Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _confidence, int _maxIters)
{
2013-08-13 21:03:56 +08:00
return Ptr<PointSetRegistrator>(
new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
}
2014-07-08 22:26:56 +08:00
class Affine3DEstimatorCallback : public PointSetRegistrator::Callback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point3f* from = m1.ptr<Point3f>();
const Point3f* to = m2.ptr<Point3f>();
const int N = 12;
double buf[N*N + N + N];
Mat A(N, N, CV_64F, &buf[0]);
Mat B(N, 1, CV_64F, &buf[0] + N*N);
Mat X(N, 1, CV_64F, &buf[0] + N*N + N);
double* Adata = A.ptr<double>();
double* Bdata = B.ptr<double>();
A = Scalar::all(0);
for( int i = 0; i < (N/3); i++ )
{
Bdata[i*3] = to[i].x;
Bdata[i*3+1] = to[i].y;
Bdata[i*3+2] = to[i].z;
double *aptr = Adata + i*3*N;
for(int k = 0; k < 3; ++k)
{
aptr[0] = from[i].x;
aptr[1] = from[i].y;
aptr[2] = from[i].z;
aptr[3] = 1.0;
aptr += 16;
}
}
solve(A, B, X, DECOMP_SVD);
X.reshape(1, 3).copyTo(_model);
return 1;
}
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
const Point3f* from = m1.ptr<Point3f>();
const Point3f* to = m2.ptr<Point3f>();
const double* F = model.ptr<double>();
int count = m1.checkVector(3);
CV_Assert( count > 0 );
_err.create(count, 1, CV_32F);
Mat err = _err.getMat();
float* errptr = err.ptr<float>();
for(int i = 0; i < count; i++ )
{
const Point3f& f = from[i];
const Point3f& t = to[i];
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
errptr[i] = (float)(a*a + b*b + c*c);
}
}
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
{
const float threshold = 0.996f;
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
for( int inp = 1; inp <= 2; inp++ )
{
int j, k, i = count - 1;
const Mat* msi = inp == 1 ? &ms1 : &ms2;
const Point3f* ptr = msi->ptr<Point3f>();
CV_Assert( count <= msi->rows );
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for(j = 0; j < i; ++j)
{
Point3f d1 = ptr[j] - ptr[i];
float n1 = d1.x*d1.x + d1.y*d1.y;
for(k = 0; k < j; ++k)
{
Point3f d2 = ptr[k] - ptr[i];
float denom = (d2.x*d2.x + d2.y*d2.y)*n1;
float num = d1.x*d2.x + d1.y*d2.y;
if( num*num > threshold*threshold*denom )
return false;
}
}
}
return true;
}
};
Merge pull request #6933 from hrnr:gsoc_all [GSOC] New camera model for stitching pipeline * implement estimateAffine2D estimates affine transformation using robust RANSAC method. * uses RANSAC framework in calib3d * includes accuracy test * uses SVD decomposition for solving 3 point equation * implement estimateAffinePartial2D estimates limited affine transformation * includes accuracy test * stitching: add affine matcher initial version of matcher that estimates affine transformation * stitching: added affine transform estimator initial version of estimator that simply chain transformations in homogeneous coordinates * calib3d: rename estimateAffine3D test test Calib3d_EstimateAffineTransform rename to Calib3d_EstimateAffine3D. This is more descriptive and prevents confusion with estimateAffine2D tests. * added perf test for estimateAffine functions tests both estimateAffine2D and estimateAffinePartial2D * calib3d: compare error in square in estimateAffine2D * incorporates fix from #6768 * rerun affine estimation on inliers * stitching: new API for parallel feature finding due to ABI breakage new functionality is added to `FeaturesFinder2`, `SurfFeaturesFinder2` and `OrbFeaturesFinder2` * stitching: add tests for parallel feature find API * perf test (about linear speed up) * accuracy test compares results with serial version * stitching: use dynamic_cast to overcome ABI issues adding parallel API to FeaturesFinder breaks ABI. This commit uses dynamic_cast and hardcodes thread-safe finders to avoid breaking ABI. This should be replaced by proper method similar to FeaturesMatcher on next ABI break. * use estimateAffinePartial2D in AffineBestOf2NearestMatcher * add constructor to AffineBestOf2NearestMatcher * allows to choose between full affine transform and partial affine transform. Other params are the as for BestOf2NearestMatcher * added protected field * samples: stitching_detailed support affine estimator and matcher * added new flags to choose matcher and estimator * stitching: rework affine matcher represent transformation in homogeneous coordinates affine matcher: remove duplicite code rework flow to get rid of duplicite code affine matcher: do not center points to (0, 0) it is not needed for affine model. it should not affect estimation in any way. affine matcher: remove unneeded cv namespacing * stitching: add stub bundle adjuster * adds stub bundle adjuster that does nothing * can be used in place of standard bundle adjusters to omit bundle adjusting step * samples: stitching detailed, support no budle adjust * uses new NoBundleAdjuster * added affine warper * uses R to get whole affine transformation and propagates rotation and translation to plane warper * add affine warper factory class * affine warper: compensate transformation * samples: stitching_detailed add support for affine warper * add Stitcher::create method this method follows similar constructor methods and returns smart pointer. This allows constructing Stitcher according to OpenCV guidelines. * supports multiple stitcher configurations (PANORAMA and SCANS) for convenient setup * returns cv::Ptr * stitcher: dynamicaly determine correct estimator we need to use affine estimator for affine matcher * preserves ABI (but add hints for ABI 4) * uses dynamic_cast hack to inject correct estimator * sample stitching: add support for multiple modes shows how to use different configurations of stitcher easily (panorama stitching and scans affine model) * stitcher: find features in parallel use new FeatureFinder API to find features in parallel. Parallelized using TBB. * stitching: disable parallel feature finding for OCL it does not bring much speedup to run features finder in parallel when OpenCL is enabled, because finder needs to wait for OCL device. Also, currently ORB is not thread-safe when OCL is enabled. * stitching: move matcher tests move matchers tests perf_stich.cpp -> perf_matchers.cpp * stitching: add affine stiching integration test test basic affine stitching (SCANS mode of stitcher) with images that have only translation between them * enable surf for stitching tests stitching.b12 test was failing with surf investigated the issue, surf is producing good result. Transformation is only slightly different from ORB, so that resulting pano does not exactly match ORB's result. That caused sanity check to fail. * added size checks similar to other tests * sanity check will be applied only for ORB * stitching: fix wrong estimator choice if case was exactly wrong, estimators were chosen wrong added logging for estimated transformation * enable surf for matchers stitching tests * enable SURF * rework sanity checking. Check estimated transform instead of matches. Est. transform should be more stable and comparable between SURF and ORB. * remove regression checking for VectorFeatures tests. It has a lot if data andtest is the same as previous except it test different vector size for performance, so sanity checking does not add any value here. Added basic sanity asserts instead. * stitching tests: allow relative error for transform * allows .01 relative error for estimated homography sanity check in stitching matchers tests * fix VS warning stitching tests: increase relative error increase relative error to make it pass on all platforms (results are still good). stitching test: allow bigger relative error transformation can differ in small values (with small absolute difference, but large relative difference). transformation output still looks usable for all platforms. This difference affects only mac and windows, linux passes fine with small difference. * stitching: add tests for affine matcher uses s1, s2 images. added also new sanity data. * stitching tests: use different data for matchers tests this data should yeild more stable transformation (it has much more matches, especially for surf). Sanity data regenerated. * stitching test: rework tests for matchers * separated rotation and translations as they are different by scale. * use appropriate absolute error for them separately. (relative error does not work for values near zero.) * stitching: fix affine warper compensation calculation of rotation and translation extracted for plane warper was wrong * stitching test: enable surf for opencl integration tests * enable SURF with correct guard (HAVE_OPENCV_XFEATURES2D) * add OPENCL guard and correct namespace as usual for opencl tests * stitching: add ocl accuracy test for affine warper test consistent results with ocl on and off * stitching: add affine warper ocl perf test add affine warper to existing warper perf tests. Added new sanity data. * stitching: do not overwrite inliers in affine matcher * estimation is run second time on inliers only, inliers produces in second run will not be therefore correct for all matches * calib3d: add Levenberg–Marquardt refining to estimateAffine2D* functions this adds affine Levenberg–Marquardt refining to estimateAffine2D functions similar to what is done in findHomography. implements Levenberg–Marquardt refinig for both full affine and partial affine transformations. * stitching: remove reestimation step in affine matcher reestimation step is not needed. estimateAffine2D* functions are running their own reestimation on inliers using the Levenberg-Marquardt algorithm, which is better than simply rerunning RANSAC on inliers. * implement partial affine bundle adjuster bundle adjuster that expect affine transform with 4DOF. Refines parameters for all cameras together. stitching: fix bug in BundleAdjusterAffinePartial * use the invers properly * use static buffer for invers to speed it up * samples: add affine bundle adjuster option to stitching_detailed * add support for using affine bundle adjuster with 4DOF * improve logging of initial intristics * sttiching: add affine bundle adjuster test * fix build warnings * stitching: increase limit on sanity check prevents spurious test failures on mac. values are still pretty fine. * stitching: set affine bundle adjuster for SCANS mode * fix bug with AffineBestOf2NearestMatcher (we want to select affine partial mode) * select right bundle adjuster * stitching: increase error bound for matcher tests * this prevents failure on mac. tranformation is still ok. * stitching: implement affine bundle adjuster * implements affine bundle adjuster that is using full affine transform * existing test case modified to test both affinePartial an full affine bundle adjuster * add stitching tutorial * show basic usage of stitching api (Stitcher class) * stitching: add more integration test for affine stitching * added new datasets to existing testcase * removed unused include * calib3d: move `haveCollinearPoints` to common header * added comment to make that this also checks too close points * calib3d: redone checkSubset for estimateAffine* callback * use common function to check collinearity * this also ensures that point will not be too close to each other * calib3d: change estimateAffine* functions API * more similar to `findHomography`, `findFundamentalMat`, `findEssentialMat` and similar * follows standard recommended semantic INPUTS, OUTPUTS, FLAGS * allows to disable refining * supported LMEDS robust method (tests yet to come) along with RANSAC * extended docs with some tips * calib3d: rewrite estimateAffine2D test * rewrite in googletest style * parametrize to test both robust methods (RANSAC and LMEDS) * get rid of boilerplate * calib3d: rework estimateAffinePartial2D test * rework in googletest style * add testing for LMEDS * calib3d: rework estimateAffine*2D perf test * test for LMEDS speed * test with/without Levenberg-Marquart * remove sanity checking (this is covered by accuracy tests) * calib3d: improve estimateAffine*2D tests * test transformations in loop * improves test by testing more potential transformations * calib3d: rewrite kernels for estimateAffine*2D functions * use analytical solution instead of SVD * this version is faster especially for smaller amount of points * calib3d: tune up perf of estimateAffine*2D functions * avoid copying inliers * avoid converting input points if not necessary * check only `from` point for collinearity, as `to` does not affect stability of transform * tutorials: add commands examples to stitching tutorials * add some examples how to run stitcher sample code * mention stitching_detailed.cpp * calib3d: change computeError for estimateAffine*2D * do error computing in floats instead of doubles this have required precision + we were storing the result in float anyway. This make code faster and allows auto-vectorization by smart compilers. * documentation: mention estimateAffine*2D function * refer to new functions on appropriate places * prefer estimateAffine*2D over estimateRigidTransform * stitching: add camera models documentations * mention camera models in module documentation to give user a better overview and reduce confusion
2016-10-23 00:10:42 +08:00
class Affine2DEstimatorCallback : public PointSetRegistrator::Callback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
_model.create(2, 3, CV_64F);
Mat M_mat = _model.getMat();
double *M = M_mat.ptr<double>();
// we need 3 points to estimate affine transform
double x1 = from[0].x;
double y1 = from[0].y;
double x2 = from[1].x;
double y2 = from[1].y;
double x3 = from[2].x;
double y3 = from[2].y;
double X1 = to[0].x;
double Y1 = to[0].y;
double X2 = to[1].x;
double Y2 = to[1].y;
double X3 = to[2].x;
double Y3 = to[2].y;
/*
We want to solve AX = B
| x1 y1 1 0 0 0 |
| 0 0 0 x1 y1 1 |
| x2 y2 1 0 0 0 |
A = | 0 0 0 x2 y2 1 |
| x3 y3 1 0 0 0 |
| 0 0 0 x3 y3 1 |
B = (X1, Y1, X2, Y2, X3, Y3).t()
X = (a, b, c, d, e, f).t()
As the estimate of (a, b, c) only depends on the Xi, and (d, e, f) only
depends on the Yi, we do the *trick* to solve each one analytically.
| X1 | | x1 y1 1 | | a |
| X2 | = | x2 y2 1 | * | b |
| X3 | | x3 y3 1 | | c |
| Y1 | | x1 y1 1 | | d |
| Y2 | = | x2 y2 1 | * | e |
| Y3 | | x3 y3 1 | | f |
*/
double d = 1. / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
M[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
M[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
M[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
M[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
M[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
M[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
return 1;
}
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
const double* F = model.ptr<double>();
int count = m1.checkVector(2);
CV_Assert( count > 0 );
_err.create(count, 1, CV_32F);
Mat err = _err.getMat();
float* errptr = err.ptr<float>();
// transform matrix to floats
float F0 = (float)F[0], F1 = (float)F[1], F2 = (float)F[2];
float F3 = (float)F[3], F4 = (float)F[4], F5 = (float)F[5];
for(int i = 0; i < count; i++ )
{
const Point2f& f = from[i];
const Point2f& t = to[i];
float a = F0*f.x + F1*f.y + F2 - t.x;
float b = F3*f.x + F4*f.y + F5 - t.y;
errptr[i] = a*a + b*b;
}
}
bool checkSubset( InputArray _ms1, InputArray, int count ) const
{
Mat ms1 = _ms1.getMat();
// check colinearity and also check that points are too close
// only ms1 affects actual estimation stability
return !haveCollinearPoints(ms1, count);
}
};
class AffinePartial2DEstimatorCallback : public Affine2DEstimatorCallback
{
public:
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
{
Mat m1 = _m1.getMat(), m2 = _m2.getMat();
const Point2f* from = m1.ptr<Point2f>();
const Point2f* to = m2.ptr<Point2f>();
_model.create(2, 3, CV_64F);
Mat M_mat = _model.getMat();
double *M = M_mat.ptr<double>();
// we need only 2 points to estimate transform
double x1 = from[0].x;
double y1 = from[0].y;
double x2 = from[1].x;
double y2 = from[1].y;
double X1 = to[0].x;
double Y1 = to[0].y;
double X2 = to[1].x;
double Y2 = to[1].y;
/*
we are solving AS = B
| x1 -y1 1 0 |
| y1 x1 0 1 |
A = | x2 -y2 1 0 |
| y2 x2 0 1 |
B = (X1, Y1, X2, Y2).t()
we solve that analytically
*/
double d = 1./((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
// solution vector
double S0 = d * ( (X1-X2)*(x1-x2) + (Y1-Y2)*(y1-y2) );
double S1 = d * ( (Y1-Y2)*(x1-x2) - (X1-X2)*(y1-y2) );
double S2 = d * ( (Y1-Y2)*(x1*y2 - x2*y1) - (X1*y2 - X2*y1)*(y1-y2) - (X1*x2 - X2*x1)*(x1-x2) );
double S3 = d * (-(X1-X2)*(x1*y2 - x2*y1) - (Y1*x2 - Y2*x1)*(x1-x2) - (Y1*y2 - Y2*y1)*(y1-y2) );
// set model, rotation part is antisymmetric
M[0] = M[4] = S0;
M[1] = -S1;
M[2] = S2;
M[3] = S1;
M[5] = S3;
return 1;
}
};
class Affine2DRefineCallback : public LMSolver::Callback
{
public:
Affine2DRefineCallback(InputArray _src, InputArray _dst)
{
src = _src.getMat();
dst = _dst.getMat();
}
bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
{
int i, count = src.checkVector(2);
Mat param = _param.getMat();
_err.create(count*2, 1, CV_64F);
Mat err = _err.getMat(), J;
if( _Jac.needed())
{
_Jac.create(count*2, param.rows, CV_64F);
J = _Jac.getMat();
CV_Assert( J.isContinuous() && J.cols == 6 );
}
const Point2f* M = src.ptr<Point2f>();
const Point2f* m = dst.ptr<Point2f>();
const double* h = param.ptr<double>();
double* errptr = err.ptr<double>();
double* Jptr = J.data ? J.ptr<double>() : 0;
for( i = 0; i < count; i++ )
{
double Mx = M[i].x, My = M[i].y;
double xi = h[0]*Mx + h[1]*My + h[2];
double yi = h[3]*Mx + h[4]*My + h[5];
errptr[i*2] = xi - m[i].x;
errptr[i*2+1] = yi - m[i].y;
/*
Jacobian should be:
{x, y, 1, 0, 0, 0}
{0, 0, 0, x, y, 1}
*/
if( Jptr )
{
Jptr[0] = Mx; Jptr[1] = My; Jptr[2] = 1.;
Jptr[3] = Jptr[4] = Jptr[5] = 0.;
Jptr[6] = Jptr[7] = Jptr[8] = 0.;
Jptr[9] = Mx; Jptr[10] = My; Jptr[11] = 1.;
Jptr += 6*2;
}
}
return true;
}
Mat src, dst;
};
class AffinePartial2DRefineCallback : public LMSolver::Callback
{
public:
AffinePartial2DRefineCallback(InputArray _src, InputArray _dst)
{
src = _src.getMat();
dst = _dst.getMat();
}
bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
{
int i, count = src.checkVector(2);
Mat param = _param.getMat();
_err.create(count*2, 1, CV_64F);
Mat err = _err.getMat(), J;
if( _Jac.needed())
{
_Jac.create(count*2, param.rows, CV_64F);
J = _Jac.getMat();
CV_Assert( J.isContinuous() && J.cols == 4 );
}
const Point2f* M = src.ptr<Point2f>();
const Point2f* m = dst.ptr<Point2f>();
const double* h = param.ptr<double>();
double* errptr = err.ptr<double>();
double* Jptr = J.data ? J.ptr<double>() : 0;
for( i = 0; i < count; i++ )
{
double Mx = M[i].x, My = M[i].y;
double xi = h[0]*Mx - h[1]*My + h[2];
double yi = h[1]*Mx + h[0]*My + h[3];
errptr[i*2] = xi - m[i].x;
errptr[i*2+1] = yi - m[i].y;
/*
Jacobian should be:
{x, -y, 1, 0}
{y, x, 0, 1}
*/
if( Jptr )
{
Jptr[0] = Mx; Jptr[1] = -My; Jptr[2] = 1.; Jptr[3] = 0.;
Jptr[4] = My; Jptr[5] = Mx; Jptr[6] = 0.; Jptr[7] = 1.;
Jptr += 4*2;
}
}
return true;
}
Mat src, dst;
};
Merge pull request #6933 from hrnr:gsoc_all [GSOC] New camera model for stitching pipeline * implement estimateAffine2D estimates affine transformation using robust RANSAC method. * uses RANSAC framework in calib3d * includes accuracy test * uses SVD decomposition for solving 3 point equation * implement estimateAffinePartial2D estimates limited affine transformation * includes accuracy test * stitching: add affine matcher initial version of matcher that estimates affine transformation * stitching: added affine transform estimator initial version of estimator that simply chain transformations in homogeneous coordinates * calib3d: rename estimateAffine3D test test Calib3d_EstimateAffineTransform rename to Calib3d_EstimateAffine3D. This is more descriptive and prevents confusion with estimateAffine2D tests. * added perf test for estimateAffine functions tests both estimateAffine2D and estimateAffinePartial2D * calib3d: compare error in square in estimateAffine2D * incorporates fix from #6768 * rerun affine estimation on inliers * stitching: new API for parallel feature finding due to ABI breakage new functionality is added to `FeaturesFinder2`, `SurfFeaturesFinder2` and `OrbFeaturesFinder2` * stitching: add tests for parallel feature find API * perf test (about linear speed up) * accuracy test compares results with serial version * stitching: use dynamic_cast to overcome ABI issues adding parallel API to FeaturesFinder breaks ABI. This commit uses dynamic_cast and hardcodes thread-safe finders to avoid breaking ABI. This should be replaced by proper method similar to FeaturesMatcher on next ABI break. * use estimateAffinePartial2D in AffineBestOf2NearestMatcher * add constructor to AffineBestOf2NearestMatcher * allows to choose between full affine transform and partial affine transform. Other params are the as for BestOf2NearestMatcher * added protected field * samples: stitching_detailed support affine estimator and matcher * added new flags to choose matcher and estimator * stitching: rework affine matcher represent transformation in homogeneous coordinates affine matcher: remove duplicite code rework flow to get rid of duplicite code affine matcher: do not center points to (0, 0) it is not needed for affine model. it should not affect estimation in any way. affine matcher: remove unneeded cv namespacing * stitching: add stub bundle adjuster * adds stub bundle adjuster that does nothing * can be used in place of standard bundle adjusters to omit bundle adjusting step * samples: stitching detailed, support no budle adjust * uses new NoBundleAdjuster * added affine warper * uses R to get whole affine transformation and propagates rotation and translation to plane warper * add affine warper factory class * affine warper: compensate transformation * samples: stitching_detailed add support for affine warper * add Stitcher::create method this method follows similar constructor methods and returns smart pointer. This allows constructing Stitcher according to OpenCV guidelines. * supports multiple stitcher configurations (PANORAMA and SCANS) for convenient setup * returns cv::Ptr * stitcher: dynamicaly determine correct estimator we need to use affine estimator for affine matcher * preserves ABI (but add hints for ABI 4) * uses dynamic_cast hack to inject correct estimator * sample stitching: add support for multiple modes shows how to use different configurations of stitcher easily (panorama stitching and scans affine model) * stitcher: find features in parallel use new FeatureFinder API to find features in parallel. Parallelized using TBB. * stitching: disable parallel feature finding for OCL it does not bring much speedup to run features finder in parallel when OpenCL is enabled, because finder needs to wait for OCL device. Also, currently ORB is not thread-safe when OCL is enabled. * stitching: move matcher tests move matchers tests perf_stich.cpp -> perf_matchers.cpp * stitching: add affine stiching integration test test basic affine stitching (SCANS mode of stitcher) with images that have only translation between them * enable surf for stitching tests stitching.b12 test was failing with surf investigated the issue, surf is producing good result. Transformation is only slightly different from ORB, so that resulting pano does not exactly match ORB's result. That caused sanity check to fail. * added size checks similar to other tests * sanity check will be applied only for ORB * stitching: fix wrong estimator choice if case was exactly wrong, estimators were chosen wrong added logging for estimated transformation * enable surf for matchers stitching tests * enable SURF * rework sanity checking. Check estimated transform instead of matches. Est. transform should be more stable and comparable between SURF and ORB. * remove regression checking for VectorFeatures tests. It has a lot if data andtest is the same as previous except it test different vector size for performance, so sanity checking does not add any value here. Added basic sanity asserts instead. * stitching tests: allow relative error for transform * allows .01 relative error for estimated homography sanity check in stitching matchers tests * fix VS warning stitching tests: increase relative error increase relative error to make it pass on all platforms (results are still good). stitching test: allow bigger relative error transformation can differ in small values (with small absolute difference, but large relative difference). transformation output still looks usable for all platforms. This difference affects only mac and windows, linux passes fine with small difference. * stitching: add tests for affine matcher uses s1, s2 images. added also new sanity data. * stitching tests: use different data for matchers tests this data should yeild more stable transformation (it has much more matches, especially for surf). Sanity data regenerated. * stitching test: rework tests for matchers * separated rotation and translations as they are different by scale. * use appropriate absolute error for them separately. (relative error does not work for values near zero.) * stitching: fix affine warper compensation calculation of rotation and translation extracted for plane warper was wrong * stitching test: enable surf for opencl integration tests * enable SURF with correct guard (HAVE_OPENCV_XFEATURES2D) * add OPENCL guard and correct namespace as usual for opencl tests * stitching: add ocl accuracy test for affine warper test consistent results with ocl on and off * stitching: add affine warper ocl perf test add affine warper to existing warper perf tests. Added new sanity data. * stitching: do not overwrite inliers in affine matcher * estimation is run second time on inliers only, inliers produces in second run will not be therefore correct for all matches * calib3d: add Levenberg–Marquardt refining to estimateAffine2D* functions this adds affine Levenberg–Marquardt refining to estimateAffine2D functions similar to what is done in findHomography. implements Levenberg–Marquardt refinig for both full affine and partial affine transformations. * stitching: remove reestimation step in affine matcher reestimation step is not needed. estimateAffine2D* functions are running their own reestimation on inliers using the Levenberg-Marquardt algorithm, which is better than simply rerunning RANSAC on inliers. * implement partial affine bundle adjuster bundle adjuster that expect affine transform with 4DOF. Refines parameters for all cameras together. stitching: fix bug in BundleAdjusterAffinePartial * use the invers properly * use static buffer for invers to speed it up * samples: add affine bundle adjuster option to stitching_detailed * add support for using affine bundle adjuster with 4DOF * improve logging of initial intristics * sttiching: add affine bundle adjuster test * fix build warnings * stitching: increase limit on sanity check prevents spurious test failures on mac. values are still pretty fine. * stitching: set affine bundle adjuster for SCANS mode * fix bug with AffineBestOf2NearestMatcher (we want to select affine partial mode) * select right bundle adjuster * stitching: increase error bound for matcher tests * this prevents failure on mac. tranformation is still ok. * stitching: implement affine bundle adjuster * implements affine bundle adjuster that is using full affine transform * existing test case modified to test both affinePartial an full affine bundle adjuster * add stitching tutorial * show basic usage of stitching api (Stitcher class) * stitching: add more integration test for affine stitching * added new datasets to existing testcase * removed unused include * calib3d: move `haveCollinearPoints` to common header * added comment to make that this also checks too close points * calib3d: redone checkSubset for estimateAffine* callback * use common function to check collinearity * this also ensures that point will not be too close to each other * calib3d: change estimateAffine* functions API * more similar to `findHomography`, `findFundamentalMat`, `findEssentialMat` and similar * follows standard recommended semantic INPUTS, OUTPUTS, FLAGS * allows to disable refining * supported LMEDS robust method (tests yet to come) along with RANSAC * extended docs with some tips * calib3d: rewrite estimateAffine2D test * rewrite in googletest style * parametrize to test both robust methods (RANSAC and LMEDS) * get rid of boilerplate * calib3d: rework estimateAffinePartial2D test * rework in googletest style * add testing for LMEDS * calib3d: rework estimateAffine*2D perf test * test for LMEDS speed * test with/without Levenberg-Marquart * remove sanity checking (this is covered by accuracy tests) * calib3d: improve estimateAffine*2D tests * test transformations in loop * improves test by testing more potential transformations * calib3d: rewrite kernels for estimateAffine*2D functions * use analytical solution instead of SVD * this version is faster especially for smaller amount of points * calib3d: tune up perf of estimateAffine*2D functions * avoid copying inliers * avoid converting input points if not necessary * check only `from` point for collinearity, as `to` does not affect stability of transform * tutorials: add commands examples to stitching tutorials * add some examples how to run stitcher sample code * mention stitching_detailed.cpp * calib3d: change computeError for estimateAffine*2D * do error computing in floats instead of doubles this have required precision + we were storing the result in float anyway. This make code faster and allows auto-vectorization by smart compilers. * documentation: mention estimateAffine*2D function * refer to new functions on appropriate places * prefer estimateAffine*2D over estimateRigidTransform * stitching: add camera models documentations * mention camera models in module documentation to give user a better overview and reduce confusion
2016-10-23 00:10:42 +08:00
int estimateAffine3D(InputArray _from, InputArray _to,
OutputArray _out, OutputArray _inliers,
double param1, double param2)
{
CV_INSTRUMENT_REGION()
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(3);
CV_Assert( count >= 0 && to.checkVector(3) == count );
Mat dFrom, dTo;
from.convertTo(dFrom, CV_32F);
to.convertTo(dTo, CV_32F);
dFrom = dFrom.reshape(3, count);
dTo = dTo.reshape(3, count);
const double epsilon = DBL_EPSILON;
param1 = param1 <= 0 ? 3 : param1;
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
2013-08-13 21:03:56 +08:00
return createRANSACPointSetRegistrator(makePtr<Affine3DEstimatorCallback>(), 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
}
Merge pull request #6933 from hrnr:gsoc_all [GSOC] New camera model for stitching pipeline * implement estimateAffine2D estimates affine transformation using robust RANSAC method. * uses RANSAC framework in calib3d * includes accuracy test * uses SVD decomposition for solving 3 point equation * implement estimateAffinePartial2D estimates limited affine transformation * includes accuracy test * stitching: add affine matcher initial version of matcher that estimates affine transformation * stitching: added affine transform estimator initial version of estimator that simply chain transformations in homogeneous coordinates * calib3d: rename estimateAffine3D test test Calib3d_EstimateAffineTransform rename to Calib3d_EstimateAffine3D. This is more descriptive and prevents confusion with estimateAffine2D tests. * added perf test for estimateAffine functions tests both estimateAffine2D and estimateAffinePartial2D * calib3d: compare error in square in estimateAffine2D * incorporates fix from #6768 * rerun affine estimation on inliers * stitching: new API for parallel feature finding due to ABI breakage new functionality is added to `FeaturesFinder2`, `SurfFeaturesFinder2` and `OrbFeaturesFinder2` * stitching: add tests for parallel feature find API * perf test (about linear speed up) * accuracy test compares results with serial version * stitching: use dynamic_cast to overcome ABI issues adding parallel API to FeaturesFinder breaks ABI. This commit uses dynamic_cast and hardcodes thread-safe finders to avoid breaking ABI. This should be replaced by proper method similar to FeaturesMatcher on next ABI break. * use estimateAffinePartial2D in AffineBestOf2NearestMatcher * add constructor to AffineBestOf2NearestMatcher * allows to choose between full affine transform and partial affine transform. Other params are the as for BestOf2NearestMatcher * added protected field * samples: stitching_detailed support affine estimator and matcher * added new flags to choose matcher and estimator * stitching: rework affine matcher represent transformation in homogeneous coordinates affine matcher: remove duplicite code rework flow to get rid of duplicite code affine matcher: do not center points to (0, 0) it is not needed for affine model. it should not affect estimation in any way. affine matcher: remove unneeded cv namespacing * stitching: add stub bundle adjuster * adds stub bundle adjuster that does nothing * can be used in place of standard bundle adjusters to omit bundle adjusting step * samples: stitching detailed, support no budle adjust * uses new NoBundleAdjuster * added affine warper * uses R to get whole affine transformation and propagates rotation and translation to plane warper * add affine warper factory class * affine warper: compensate transformation * samples: stitching_detailed add support for affine warper * add Stitcher::create method this method follows similar constructor methods and returns smart pointer. This allows constructing Stitcher according to OpenCV guidelines. * supports multiple stitcher configurations (PANORAMA and SCANS) for convenient setup * returns cv::Ptr * stitcher: dynamicaly determine correct estimator we need to use affine estimator for affine matcher * preserves ABI (but add hints for ABI 4) * uses dynamic_cast hack to inject correct estimator * sample stitching: add support for multiple modes shows how to use different configurations of stitcher easily (panorama stitching and scans affine model) * stitcher: find features in parallel use new FeatureFinder API to find features in parallel. Parallelized using TBB. * stitching: disable parallel feature finding for OCL it does not bring much speedup to run features finder in parallel when OpenCL is enabled, because finder needs to wait for OCL device. Also, currently ORB is not thread-safe when OCL is enabled. * stitching: move matcher tests move matchers tests perf_stich.cpp -> perf_matchers.cpp * stitching: add affine stiching integration test test basic affine stitching (SCANS mode of stitcher) with images that have only translation between them * enable surf for stitching tests stitching.b12 test was failing with surf investigated the issue, surf is producing good result. Transformation is only slightly different from ORB, so that resulting pano does not exactly match ORB's result. That caused sanity check to fail. * added size checks similar to other tests * sanity check will be applied only for ORB * stitching: fix wrong estimator choice if case was exactly wrong, estimators were chosen wrong added logging for estimated transformation * enable surf for matchers stitching tests * enable SURF * rework sanity checking. Check estimated transform instead of matches. Est. transform should be more stable and comparable between SURF and ORB. * remove regression checking for VectorFeatures tests. It has a lot if data andtest is the same as previous except it test different vector size for performance, so sanity checking does not add any value here. Added basic sanity asserts instead. * stitching tests: allow relative error for transform * allows .01 relative error for estimated homography sanity check in stitching matchers tests * fix VS warning stitching tests: increase relative error increase relative error to make it pass on all platforms (results are still good). stitching test: allow bigger relative error transformation can differ in small values (with small absolute difference, but large relative difference). transformation output still looks usable for all platforms. This difference affects only mac and windows, linux passes fine with small difference. * stitching: add tests for affine matcher uses s1, s2 images. added also new sanity data. * stitching tests: use different data for matchers tests this data should yeild more stable transformation (it has much more matches, especially for surf). Sanity data regenerated. * stitching test: rework tests for matchers * separated rotation and translations as they are different by scale. * use appropriate absolute error for them separately. (relative error does not work for values near zero.) * stitching: fix affine warper compensation calculation of rotation and translation extracted for plane warper was wrong * stitching test: enable surf for opencl integration tests * enable SURF with correct guard (HAVE_OPENCV_XFEATURES2D) * add OPENCL guard and correct namespace as usual for opencl tests * stitching: add ocl accuracy test for affine warper test consistent results with ocl on and off * stitching: add affine warper ocl perf test add affine warper to existing warper perf tests. Added new sanity data. * stitching: do not overwrite inliers in affine matcher * estimation is run second time on inliers only, inliers produces in second run will not be therefore correct for all matches * calib3d: add Levenberg–Marquardt refining to estimateAffine2D* functions this adds affine Levenberg–Marquardt refining to estimateAffine2D functions similar to what is done in findHomography. implements Levenberg–Marquardt refinig for both full affine and partial affine transformations. * stitching: remove reestimation step in affine matcher reestimation step is not needed. estimateAffine2D* functions are running their own reestimation on inliers using the Levenberg-Marquardt algorithm, which is better than simply rerunning RANSAC on inliers. * implement partial affine bundle adjuster bundle adjuster that expect affine transform with 4DOF. Refines parameters for all cameras together. stitching: fix bug in BundleAdjusterAffinePartial * use the invers properly * use static buffer for invers to speed it up * samples: add affine bundle adjuster option to stitching_detailed * add support for using affine bundle adjuster with 4DOF * improve logging of initial intristics * sttiching: add affine bundle adjuster test * fix build warnings * stitching: increase limit on sanity check prevents spurious test failures on mac. values are still pretty fine. * stitching: set affine bundle adjuster for SCANS mode * fix bug with AffineBestOf2NearestMatcher (we want to select affine partial mode) * select right bundle adjuster * stitching: increase error bound for matcher tests * this prevents failure on mac. tranformation is still ok. * stitching: implement affine bundle adjuster * implements affine bundle adjuster that is using full affine transform * existing test case modified to test both affinePartial an full affine bundle adjuster * add stitching tutorial * show basic usage of stitching api (Stitcher class) * stitching: add more integration test for affine stitching * added new datasets to existing testcase * removed unused include * calib3d: move `haveCollinearPoints` to common header * added comment to make that this also checks too close points * calib3d: redone checkSubset for estimateAffine* callback * use common function to check collinearity * this also ensures that point will not be too close to each other * calib3d: change estimateAffine* functions API * more similar to `findHomography`, `findFundamentalMat`, `findEssentialMat` and similar * follows standard recommended semantic INPUTS, OUTPUTS, FLAGS * allows to disable refining * supported LMEDS robust method (tests yet to come) along with RANSAC * extended docs with some tips * calib3d: rewrite estimateAffine2D test * rewrite in googletest style * parametrize to test both robust methods (RANSAC and LMEDS) * get rid of boilerplate * calib3d: rework estimateAffinePartial2D test * rework in googletest style * add testing for LMEDS * calib3d: rework estimateAffine*2D perf test * test for LMEDS speed * test with/without Levenberg-Marquart * remove sanity checking (this is covered by accuracy tests) * calib3d: improve estimateAffine*2D tests * test transformations in loop * improves test by testing more potential transformations * calib3d: rewrite kernels for estimateAffine*2D functions * use analytical solution instead of SVD * this version is faster especially for smaller amount of points * calib3d: tune up perf of estimateAffine*2D functions * avoid copying inliers * avoid converting input points if not necessary * check only `from` point for collinearity, as `to` does not affect stability of transform * tutorials: add commands examples to stitching tutorials * add some examples how to run stitcher sample code * mention stitching_detailed.cpp * calib3d: change computeError for estimateAffine*2D * do error computing in floats instead of doubles this have required precision + we were storing the result in float anyway. This make code faster and allows auto-vectorization by smart compilers. * documentation: mention estimateAffine*2D function * refer to new functions on appropriate places * prefer estimateAffine*2D over estimateRigidTransform * stitching: add camera models documentations * mention camera models in module documentation to give user a better overview and reduce confusion
2016-10-23 00:10:42 +08:00
Mat estimateAffine2D(InputArray _from, InputArray _to, OutputArray _inliers,
const int method, const double ransacReprojThreshold,
const size_t maxIters, const double confidence,
const size_t refineIters)
{
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(2);
bool result = false;
Mat H;
CV_Assert( count >= 0 && to.checkVector(2) == count );
if (from.type() != CV_32FC2 || to.type() != CV_32FC2)
{
Mat tmp;
from.convertTo(tmp, CV_32FC2);
from = tmp;
to.convertTo(tmp, CV_32FC2);
to = tmp;
}
// convert to N x 1 vectors
from = from.reshape(2, count);
to = to.reshape(2, count);
Mat inliers;
if(_inliers.needed())
{
_inliers.create(count, 1, CV_8U, -1, true);
inliers = _inliers.getMat();
}
// run robust method
Ptr<PointSetRegistrator::Callback> cb = makePtr<Affine2DEstimatorCallback>();
if( method == RANSAC )
result = createRANSACPointSetRegistrator(cb, 3, ransacReprojThreshold, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else if( method == LMEDS )
result = createLMeDSPointSetRegistrator(cb, 3, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else
CV_Error(Error::StsBadArg, "Unknown or unsupported robust estimation method");
if(result && count > 3 && refineIters)
{
// reorder to start with inliers
compressElems(from.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
int inliers_count = compressElems(to.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
if(inliers_count > 0)
{
Mat src = from.rowRange(0, inliers_count);
Mat dst = to.rowRange(0, inliers_count);
Mat Hvec = H.reshape(1, 6);
createLMSolver(makePtr<Affine2DRefineCallback>(src, dst), static_cast<int>(refineIters))->run(Hvec);
}
}
if (!result)
{
H.release();
if(_inliers.needed())
{
inliers = Mat::zeros(count, 1, CV_8U);
inliers.copyTo(_inliers);
}
}
return H;
}
Mat estimateAffinePartial2D(InputArray _from, InputArray _to, OutputArray _inliers,
const int method, const double ransacReprojThreshold,
const size_t maxIters, const double confidence,
const size_t refineIters)
{
Mat from = _from.getMat(), to = _to.getMat();
const int count = from.checkVector(2);
bool result = false;
Mat H;
CV_Assert( count >= 0 && to.checkVector(2) == count );
if (from.type() != CV_32FC2 || to.type() != CV_32FC2)
{
Mat tmp;
from.convertTo(tmp, CV_32FC2);
from = tmp;
to.convertTo(tmp, CV_32FC2);
to = tmp;
}
// convert to N x 1 vectors
from = from.reshape(2, count);
to = to.reshape(2, count);
Mat inliers;
if(_inliers.needed())
{
_inliers.create(count, 1, CV_8U, -1, true);
inliers = _inliers.getMat();
}
// run robust estimation
Ptr<PointSetRegistrator::Callback> cb = makePtr<AffinePartial2DEstimatorCallback>();
if( method == RANSAC )
result = createRANSACPointSetRegistrator(cb, 2, ransacReprojThreshold, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else if( method == LMEDS )
result = createLMeDSPointSetRegistrator(cb, 2, confidence, static_cast<int>(maxIters))->run(from, to, H, inliers);
else
CV_Error(Error::StsBadArg, "Unknown or unsupported robust estimation method");
if(result && count > 2 && refineIters)
{
// reorder to start with inliers
compressElems(from.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
int inliers_count = compressElems(to.ptr<Point2f>(), inliers.ptr<uchar>(), 1, count);
if(inliers_count > 0)
{
Mat src = from.rowRange(0, inliers_count);
Mat dst = to.rowRange(0, inliers_count);
// H is
// a -b tx
// b a ty
// Hvec model for LevMarq is
// (a, b, tx, ty)
double *Hptr = H.ptr<double>();
double Hvec_buf[4] = {Hptr[0], Hptr[3], Hptr[2], Hptr[5]};
Mat Hvec (4, 1, CV_64F, Hvec_buf);
createLMSolver(makePtr<AffinePartial2DRefineCallback>(src, dst), static_cast<int>(refineIters))->run(Hvec);
// update H with refined parameters
Hptr[0] = Hptr[4] = Hvec_buf[0];
Hptr[1] = -Hvec_buf[1];
Hptr[2] = Hvec_buf[2];
Hptr[3] = Hvec_buf[1];
Hptr[5] = Hvec_buf[3];
}
}
if (!result)
{
H.release();
if(_inliers.needed())
{
inliers = Mat::zeros(count, 1, CV_8U);
inliers.copyTo(_inliers);
}
}
return H;
}
} // namespace cv