opencv/modules/imgproc/src/deriv.cpp

655 lines
23 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
2014-03-21 19:27:56 +08:00
static IppStatus sts = ippicvInit();
#endif
/****************************************************************************************\
Sobel & Scharr Derivative Filters
\****************************************************************************************/
namespace cv
{
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, bool normalize, int ktype )
{
const int ksize = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksize, 1, ktype, -1, true);
_ky.create(ksize, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int kerI[3];
if( order == 0 )
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize || order == 1 ? 1. : 1./32;
temp.convertTo(*kernel, ktype, scale);
}
}
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
2012-10-17 15:12:04 +08:00
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
temp.convertTo(*kernel, ktype, scale);
}
}
}
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
int ksize, bool normalize, int ktype )
{
if( ksize <= 0 )
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
else
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
}
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
int dx, int dy, int ksize, int borderType )
{
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
return createSeparableLinearFilter(srcType, dstType,
kx, ky, Point(-1,-1), 0, borderType );
}
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
namespace cv
{
static bool IPPDerivScharr(const Mat& src, Mat& dst, int ddepth, int dx, int dy, double scale)
{
int bufSize = 0;
cv::AutoBuffer<char> buffer;
IppiSize roi = ippiSize(src.cols, src.rows);
if( ddepth < 0 )
ddepth = src.depth();
dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
switch(src.type())
{
case CV_8U:
{
if(scale != 1)
return false;
switch(dst.type())
{
case CV_16S:
{
if((dx == 1) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterScharrVertGetBufferSize_8u16s_C1R(roi,&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterScharrVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 1))
{
2014-03-21 19:27:56 +08:00
ippicviFilterScharrHorizGetBufferSize_8u16s_C1R(roi,&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterScharrHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
}
default:
return false;
}
}
case CV_32F:
{
switch(dst.type())
{
case CV_32F:
if((dx == 1) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterScharrVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterScharrVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
/* IPP is fast, so MulC produce very little perf degradation */
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f*)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 1))
{
2014-03-21 19:27:56 +08:00
ippicviFilterScharrHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterScharrHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
default:
return false;
}
}
default:
return false;
}
}
static bool IPPDeriv(const Mat& src, Mat& dst, int ddepth, int dx, int dy, int ksize, double scale)
{
int bufSize = 0;
cv::AutoBuffer<char> buffer;
if(ksize == 3 || ksize == 5)
{
if( ddepth < 0 )
ddepth = src.depth();
if(src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
{
if((dx == 1) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelNegVertGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelNegVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 1))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 2) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelVertSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelVertSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
if((dx == 0) && (dy == 2))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
return true;
}
}
if(src.type() == CV_32F && dst.type() == CV_32F)
{
if((dx == 1) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelNegVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), &bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelNegVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 1))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 2) && (dy == 0))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelVertSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelVertSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 2))
{
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize);
buffer.allocate(bufSize);
2014-03-21 19:27:56 +08:00
ippicviFilterSobelHorizSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
2013-10-05 18:35:31 +08:00
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer);
if(scale != 1)
2014-03-21 19:27:56 +08:00
ippicviMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
}
}
if(ksize <= 0)
return IPPDerivScharr(src, dst, ddepth, dx, dy, scale);
return false;
}
}
2012-10-17 15:12:04 +08:00
#endif
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
2011-05-10 14:24:44 +08:00
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
return;
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if(dx < 3 && dy < 3 && cn == 1 && borderType == BORDER_REPLICATE)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if(IPPDeriv(src, dst, ddepth, dx, dy, ksize,scale))
return;
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if(dx < 2 && dy < 2 && _src.channels() == 1 && borderType == 1)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if(IPPDerivScharr(src, dst, ddepth, dx, dy, scale))
return;
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getScharrKernels( kx, ky, dx, dy, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
const Mat & kd, const Mat & ks, double scale, double delta,
int borderType, int depth, int ddepth)
{
int iscale = cvRound(scale), idelta = cvRound(delta);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
int cn = _src.channels(), wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
if (!doubleSupport && wdepth == CV_64F)
return false;
char cvt[2][40];
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
format("-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
"-D convertToWT=%s -D convertToDT=%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
ocl::typeToStr(wdepth), wdepth,
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, kercn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat d2x, d2y;
sepFilter2D(_src, d2x, depth, kd, ks, Point(-1, -1), 0, borderType);
sepFilter2D(_src, d2y, depth, ks, kd, Point(-1, -1), 0, borderType);
UMat dst = _dst.getUMat();
ocl::KernelArg d2xarg = ocl::KernelArg::ReadOnlyNoSize(d2x),
d2yarg = ocl::KernelArg::ReadOnlyNoSize(d2y),
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
if (wdepth >= CV_32F)
k.args(d2xarg, d2yarg, dstarg, (float)scale, (float)delta);
else
k.args(d2xarg, d2yarg, dstarg, iscale, idelta);
size_t globalsize[] = { dst.cols * cn / kercn, dst.rows };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
2012-10-17 15:12:04 +08:00
2012-08-24 18:36:16 +08:00
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
2012-10-17 15:12:04 +08:00
if (ksize == 1 && tegra::laplace1(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 3 && tegra::laplace3(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 5 && tegra::laplace5(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
}
#endif
2012-10-17 15:12:04 +08:00
if( ksize == 1 || ksize == 3 )
{
float K[2][9] =
{
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
};
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
if( scale != 1 )
kernel *= scale;
filter2D( _src, _dst, ddepth, kernel, Point(-1, -1), delta, borderType );
}
else
{
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
int wdepth = sdepth == CV_8U && ksize <= 5 ? CV_16S : sdepth <= CV_32F ? CV_32F : CV_64F;
int wtype = CV_MAKETYPE(wdepth, cn);
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
CV_OCL_RUN(_dst.isUMat(),
ocl_Laplacian5(_src, _dst, kd, ks, scale,
delta, borderType, wdepth, ddepth))
const size_t STRIPE_SIZE = 1 << 14;
Ptr<FilterEngine> fx = createSeparableLinearFilter(stype,
2012-10-17 15:12:04 +08:00
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> fy = createSeparableLinearFilter(stype,
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
Mat src = _src.getMat(), dst = _dst.getMat();
int y = fx->start(src), dsty = 0, dy = 0;
fy->start(src);
const uchar* sptr = src.data + y*src.step;
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
{
fx->proceed( sptr, (int)src.step, dy0, d2x.data, (int)d2x.step );
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.data, (int)d2y.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
d2x.rows = d2y.rows = dy; // modify the headers, which should work
d2x += d2y;
d2x.convertTo( dstripe, ddepth, scale, delta );
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
dst *= -1;
}
CV_IMPL void
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
}
/* End of file. */